北京昌平地区串岭沟组沉积岩中独居石、金红石赋存状态及其成因

时间:2022-08-26 08:31:09

摘要:对采自北京昌平地区串岭沟组下部层位粉砂质泥岩中的矿物进行了详细的能谱分析,发现了独居石和金红石颗粒。独居石最大粒径为88 μm,金红石最大粒径为20 μm。背散射图像显示独居石边缘不平整,形状不规则,呈现出“鱼形”、“鸟形”、“花形”、“虫形”等各种形状;金红石则呈串珠状分布。大量的观察发现,独居石和金红石绝大多数都分布在石英脉或赤铁矿细脉里,远离脉的地方几乎没有独居石和金红石的分布。独居石初步SHRIMP UPb原位定年结果为(152±11)Ma,表明这些独居石颗粒并非成岩期形成,而为次生独居石,其形成与后期的热液事件有关。

关键词:成因矿物学;串岭沟组;独居石;金红石;热液成因;SHRIMP UPb年龄;能谱分析;北京

中图分类号:P571文献标志码:A

Occurrence and Origin of Monazites and Rutiles from Sedimentary

Rocks of Chuanlinggou Formation in Changping Area of Beijing

DING Jing1,2, SONG Tianrui3, SHI Yuruo2

(1. School of Graduates, China University of Geosciences, Beijing 100083, China; 2. Beijing SHRIMP Center,

Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China; 3. Institute of

Geology, Chinese Academy of Geological Sciences, Beijing 100037, China)

Abstract: Monazite and rutile grains are found in the contribution by using energy spectrum analysis to study the silty mudstones, which are collected from the lower part of Chuanlinggou Formation in Changping area of Beijing. The maximum particle size of the monazite is up to 88 μm while the largest rutile is 20 μm. According to lots of backscattered images, the monazites show jagged edges and irregular shapes, appeared as fishes, birds, flowers, worms, and so on, while the rutiles are arranged as a string of beads. An overwhelming majority of the monazites and rutiles are distributed in quartz or hematite veins. However, monazites or rutiles are hardly found in the places far away from the veins. These monazites with the age of (152±11)Ma are dated using SHRIMP Ⅱ at Beijing SHRIMP Center. According to the preliminary age data, it is suggested that these monazites belong to secondary monazites, which are associated with the late hydrothermal event, not formed in the diagenetic stage.

Key words: genetic mineralogy; Chuanlinggou Formation; monazite; rutile; hydrothermal origin; SHRIMP UPb age; EDAX; Beijing

0引言

图件引自文献[9],有所修改

图1华北克拉通中―新元古代沉积盖层分布

Fig.1Distribution of the MesoNeoproterozoic Strata in North China Craton

国际上首次报道的沉积物中自生稀土矿物发现于匈牙利中部Transdanubian卡斯特岩的缝隙中[1]。在中国,宋天锐首次在大连地区前寒武纪沉积岩中发现了包裹在针铁矿细脉中的自生独居石,认为其形成于前寒武纪震旦系正常沉积环境中[2]。宋天锐等根据宏观、微观和地球化学研究结果,证明了在北京十三陵中元古界长城系串岭沟组有地质事件层,并提出串岭沟组的火山地震事件可能导致串岭沟组泥岩中存在自生独居石[3]。若设法找到这些自生独居石,并对其进行精确定年,将有效限定串岭沟组沉积岩的成岩年龄。因此,笔者对北京昌平地区中元古界长城系串岭沟组地层按层位进行采样,并对其下部层位岩石中的矿物进行了详细的能谱分析,发现确实存在不规则状的独居石,并发现了呈串珠状分布的金红石颗粒。本文对这些发现进行详细报道,并对其成因进行了探讨。

1地质背景和样品描述

北京昌平地区在大地构造位置上位于华北地块或中朝克拉通的北部(图1)。吕梁运动(1 800~1 900 Ma)之后,华北地块开始进入地台演化阶段,即裂谷系的发育与演化阶段[45]。裂谷系分南、北两个裂陷槽和北缘、东缘各一个裂谷带。华北地块南部的裂陷槽称为熊耳裂陷槽,华北地块北部的裂陷槽称为燕辽裂陷槽。研究区位于燕辽裂陷槽内。

北京昌平地区中元古界长城系地层自下而上包括常州沟组(Chc)、串岭沟组(Chch)、团山子组(Cht)、大红峪组(Chd)和高于庄组(Chg)共5个组。本次研究样品采自长城系第2个组――串岭沟组(图2)。

串岭沟组为一套近海篮沉积[68],厚度约50 m,底部以平行不整合与常州沟组顶部的砂坝砂岩相接触,顶部与团山子组整合过渡。串岭沟组岩性组合分3段,下部层位为粉砂质泥岩,中部层位为粉砂岩与白云岩凸镜体,上部层位为黑灰色薄层砂岩粉砂岩互层。

Q为第四系;Jxt为铁岭组;Jxh为洪水庄组;Jxw为雾迷山组;Jxy为杨庄组;Qb为青白口系;Chg为高于庄组;Chd为大红峪组;Cht为团山子组;Chch为串岭沟组;Chc为常州沟组;Ar为太古代;图(a)引自文献[12],有所修改

图2北京十三陵地区地质简图及长城系地层岩性柱状图

Fig.2Geological Map of the Ming Tombs Area of Beijing and Column of Stratum Lithology of Changcheng System

宋天锐等认为,串岭沟组的地质事件是由于燕山裂陷槽形成早期的火山活动及由其引发的地震事件产生的[3]。串岭沟组下部旋回的上段与中部旋回的下段出现明显的地震构造。宏观标志包括典型的砂体液化构造、层内滑塌构造和层内断层构造(图3)。微观标志包括小型泄水构造、细脉充填和显微层内错动[3]。

图3中元古界串岭沟组古地震沉积构造

Fig.3Paleoseismic Sedimentary Structures of Mesoproterozoic Chuanlinggou Formation

本次研究样品MC1采自北京昌平地区十三陵德胜口附近(40°17′56.8″N,116°10′55.8″E),属串岭沟组下部层位,岩性为粉砂质泥岩。详细的能谱分析发现了大量的独居石和金红石颗粒。图4为串岭沟组底部粉砂质泥岩显微照片,赤铁矿脉和几条石英脉清晰可见,独居石和金红石即分布在这些脉中。

能谱分析在北京矿冶研究总院扫描电镜室EDAX能谱分析仪上完成。测试样品表面磨平抛光,表面喷镀金膜。电子束加速电压(HV)为2500 kV,所需工作距离(WD)为10.5 mm,束斑为4.5 μm。

2独居石特征

独居石别名磷铈镧矿、磷镧铈石,化学式为(Ce,La,Nd,Th)(PO4),是一种富含轻稀土元素的磷酸盐矿物。因其含有较高的U、Th及较低的普通Pb[1314],经常能形成一致的UPb和ThPb年龄,而且独居石UPb同位素体系封闭温度较高(530 ℃~720 ℃)[15],不易受到后期热事件的干扰,是理想的UThPb定年对象[1618]。

图4串岭沟组底部粉砂质泥岩显微照片

Fig.4Photomicrograph of the Silty Mudstone from the Lower Part of Chuanlinggou Formation

独居石在背散射图像中呈亮白色(图5),粒径为30~88 μm,具他形粒状结构,形状复杂,可呈现出“鱼形”、“鸟形”、“花形”、“虫形”等各种形状。独居石颗粒的边部出现晶棱圆化、港湾状结构等特征。从图5可以看出,独居石内部有细小石英的交代残余结构。独居石有两种产状:①以分散细粒状或团粒状集合体沿着赤铁矿脉分布;②以他形晶粒状结构被包裹在石英脉中。

图6展示了独居石及其周边石英脉的能谱曲线。图6(a)中,Ⅰ所在区域为一独居石颗粒,具他形晶粒状结构,边缘呈锯齿状,被包含在石英脉里,Ⅱ所在区域为石英脉。

3金红石特征

在发现独居石的同时,还发现了金红石(化学式为TiO2,图7),背散射图像中呈暗灰色。根据能谱曲线,独居石生长在赤铁矿脉[图7(a)、(c)中十字标记处]上,数量较少,颗粒较大,而金红石[图7(e)、(g)中十字标记处]数量较多,单个颗粒较小,最大粒径仅为20 μm,呈不规则粒状结构,沿着赤铁矿脉呈串珠状分布,构成一条金红石细脉。

图7(i)中独居石的边上生长有金红石颗粒,两者之间为共结边结构,界面平整呈舒缓波状,反映矿物是近于同时结晶的。独居石和金红石内部均有细小的长石残余。

4独居石成因讨论

4.1年龄

独居石SHRIMP UPb原位定年在中国地质科学院地质研究所北京离子探针中心SHRIMP Ⅱ仪器上完成。独居石测年原理和方法见文献[19]。一次离子流O-2强度为1.55 nA,束斑为15 μm左右。独居石定年时,每个数据点的测定由5组扫描构成,对203(CePO2)+、204Pb+、背景值、206Pb+、207Pb+、208Pb+、238U+、248(ThO)+和254(UO)+共9个质量峰进行数据采集。独居石标准样GM3(U含量(质量分数,下同)为0.658 8%,年龄为486 Ma)用于未知样品U 含量标定和年龄校正。用于年龄计算的衰变常数为IUGS 同位素年代学分会的推荐值[20]。标准样GM3 和待测样之比为1∶(3~4)。数据处理采用Squid和ISOPLOT程序[2122]。实测204Pb用于普通Pb校正。单个数据点误差类型为1σ。

4.2成因

独居石成因类型主要有岩浆成因[2326]、热液成因[2730]、变质成因[3133]及沉积成岩过程中自生独居石成因[2,3436]。本文中独居石显然不是变质成因。独居石SHRIMP UPb原位定年初步结果为(152±11)Ma,表明这些独居石颗粒也不是串岭沟组沉积成岩过程中形成的。通常情况下,岩浆成因独居石晶形较好,具柱状、近等轴状或浑圆状晶形[14],Th含量高[25](3%~7%或更高[37]);而热液成因独居石呈脉状产出[25],与脉石矿物共生[25],U含量低[38],Th含量也低[25],Th含量通常小于1%[37]。本文中独居石产出在石英脉或赤铁矿脉中,U、Th含量均较低,U、Th含量分别为(148~5 923)×10-6和(348~4 301)×10-6,平均值分别为820×10-6和2 145×10-6,显示热液独居石的特征。相对于岩浆成因独居石,热液成因独居石通常颗粒较小[14](岩浆成因独居石为100~200 μm,热液成因独居石约小于50 μm),本文中独居石颗粒为30~88 μm。

另外,不同成因独居石具有不同的产状和矿物组合。岩浆成因独居石多产于花岗岩、花岗伟晶岩或碱性伟晶岩中,常与磷钙钍石、褐帘石、锆石、绿柱石、铯榴石、黑稀金矿等共生;热液成因独居石多产于交代岩和白云岩中,常与斜钍石、赤铁矿、磁铁矿、萤石等共生[14]。本文中独居石绝大多数都聚集分布在石英脉或赤铁矿细脉里(图9)。这些细脉所在处具备了结晶独居石和金红石的条件,包括内部条件和外部条件。内部条件指细脉所在处含有一定量的形成独居石和金红石的化学元素;外部条件指当时的温度、压力、pH值等外部因素有利于独居石和金红石的结晶。

宋天锐等认为,串岭沟组火山地震事件可能导致串岭沟组泥岩中存在自生独居石[3]。笔者对所发现的独居石进行初步SHRIMP UPb原位定年,获得的年龄为(152±11)Ma,属晚侏罗世。这一年龄结果表明,北京昌平地区串岭沟组泥岩中的独居石并非成岩期产物,而是结晶于热液流体中的次生独居石。晚侏罗世时期,华北地块有大量中酸性岩浆多次喷发[39],热液可能来源于这些大规模的岩浆活动。

图9独居石沿着细脉生长

Fig.9Monazites Growing Along the Veins

5结语

(1)串岭沟组下部层位岩性为黑色页岩和粉砂质泥岩,在该层中发现了大量独居石和金红石颗粒。独居石最大粒径为88 μm,边缘不平整,形状不规则,呈现出“鱼形”、“鸟形”、“花形”、“虫形”等各种形状;金红石颗粒较独居石小,呈他形粒状。

(2)独居石被包含在石英脉中或沿着赤铁矿脉分布;金红石则沿着赤铁矿脉呈串珠状分布。

(3)独居石SHRIMP UPb原位定年研究表明其年龄为(152±11)Ma,结合其低U、Th含量及其特有的产状和矿物组合,确定该独居石颗粒为热液成因。

Allen Kennedy提供了独居石标准样,中国地质科学院地质研究所北京离子探针中心车小超、甘伟林等在样品制备和分析过程中给予帮助和支持,在此一并致谢!

参考文献:

References:

[1]MAKSIMOVIC Z J,PANTO G Y.Authigenic Rare Earth Minerals in Karstbauxites and Karstic Nickel Deposits[J].Mineralogical Society Series,1995,7:257280.

[2]宋天锐.大连地区前寒武纪沉积岩中发现自生独居石及其意义[J].沉积学报,1999,17(增):663667.

SONG Tianrui.Discovery of Authigenic Rare Earth Mineralmonazite in Precambrian Sedimentary Rock of Dalian Area and Its Significance[J].Acta Sedimentologica Sinica,1999,17(S):663667.

[3]宋天锐,和政军,丁孝忠,等.北京十三陵中元古代串岭沟期地质事件的探索[J].地质论评,2000,46(4):400406.

SONG Tianrui,HE Zhengjun,DING Xiaozhong,et al.A Study of Geological Event Records in the Proterozoic Chuanlinggou Formation of the Ming Tombs District,Beijing[J].Geological Review,2000,46(4):400406.

[4]翟明国,胡波,彭澎,等.华北中―新元古代的岩浆作用与多期裂谷事件[J].地学前缘,2014,21(1):100119.

ZHAI Mingguo,HU Bo,PENG Peng,et al.MesoNeoproterozoic Magmatic Events and Multistage Rifting in the NCC[J]. Earth Science Frontiers,2014,21(1):100119.

[5]翟明国.大陆动力学的物质演化研究方向与思路[J].地球科学与环境学报,2015,37(4):114.

ZHAI Mingguo.New Research Interests and Concept of Material Evolution for Continental Dynamics[J].Journal of Earth Sciences and Environment,2015,37(4):114.

[6]宋天锐.北京十三陵地区中元古界长城系沉积相标志及沉积环境模式[J].古地理学报,2007,9(5):461472.

SONG Tianrui.Sedimentary Facies Indicators and Sedimentary Environments Models of the Changcheng System of Mesoproterozoic in Ming Tombs District,Beijing[J].Journal of Palaeogeography,2007,9(5):461472.

[7]段超,李延河,魏明辉,等.河北宣化姜家寨铁矿床串岭沟组底部碎屑锆石LAMCICPMS UPb年龄及其地质意义[J].岩石学报,2014,30(1):3548.

DUAN Chao,LI Yanhe,WEI Minghui,et al.UPb Dating Study of Detrital Zircons from the Chuanlinggou Formation in Jiangjiazhai Iron Deposit,North China Craton and Its Geological Significances[J].Acta Petrologica Sinica,2014,30(1):3548.

[8]石成龙,刘典波,崔一龙,等.华北串岭沟组软沉积物变形构造及其构造古地理意义[J].地质论评,2016,62(1):3753.

SHI Chenglong,LIU Dianbo,CUI Yilong,et al.Softsediment Structures Developed in Northern Part of North China Paleocontinent and Their Constraint on Geodynamic Environment of Sedimentary Basin[J].Geological Review,2016,62(1):3753.

[9]PENG P,BLEEKER W,ERNST R E,et al.UPb Baddeleyite Ages,Distribution and Geochemistry of 925 Ma Mafic Dykes and 900 Ma Sills in the North China Craton:Evidence for a Neoproterozoic Mantle Plume[J].Lithos,2011,127(1/2):210221.

[10]高林志,张传恒,刘鹏举,等.华北―江南地区中、新元古代地层格架的再认识[J].地球学报,2009,30(4):433446.

GAO Linzhi,ZHANG Chuanheng,LIU Pengju,et al.Recognition of Meso and Neoproterozoic Stratigraphic Framework in North and South China[J].Acta Geoscientica Sinica,2009,30(4):433446.

[11]高维,张传恒,高林志,等.北京密云环斑花岗岩的锆石SHRIMP UPb年龄及其构造意义[J].地质通报,2008,27(6):793798.

GAO Wei,ZHANG Chuanheng,GAO Linzhi,et al.Zircon SHRIMP UPb Age of Rapakivi Granite in Miyun,Beijing,China,and Its Tectonostratigraphic Implications[J].Geological Bulletin of China,2008,27(6):793798.

[12]张巧大,宋天锐,和政军,等.北京十三陵地区中―新元古界碳酸盐岩PbPb年龄研究[J].地质论评,2002,48(4):416423.

ZHANG Qiaoda,SONG Tianrui,HE Zhengjun,et al.PbPb Age Determination of Meso to Neoproterozoic Carbonates in the Ming Tombs District,Beijing[J].Geological Review,2002,48(4):416423.

[13]OVERSTREET W C.The Geologic Occurrence of Monazite:A Review of the Distribution of Monazite and of the Geologic Controls Affecting the Amount of Thorium in Monazite[R].Reston:U.S.Geological Survey,1967.

[14]邱昆峰,杨立强.独居石成因特征与UThPb定年及三江特提斯构造演化研究例析[J].岩石学报,2011,27(9):27212732.

QIU Kunfeng,YANG Liqiang.Genetic Feature of Monazite and Its UThPb Dating:Critical Considerations on the Tectonic Evolution of Sanjiang Tethys[J].Acta Petrologica Sinica,2011,27(9):27212732.

[15]HARRISON T M,CATLOS E J,MONTEL J M.UThPb Dating of Phosphate Minerals[J].Reviews in Mineralogy Geochemistry,2002,48(1):524558.

[16]STERN R A,BERMAN R G.Monazite UPb and ThPb Geochronology by Ion Microprobe,with an Application to Insitu Dating of an Archean Metasedimentary Rock[J].Chemical Geology,2000,172(1/2):113130.

[17]RASMUSSEN B,MUELLER A G,FLETCHER I R.Zirconolite and Xenotime UPb Age Constraints on the Emplacement of the Golden Mile Dolerite Sill and Gold Mineralization at Mt Charlotte Mine,Eastern Goldfields Province,Yilgarn Craton,Western Australia[J].Contributions to Mineralogy and Petrology,2009,157(5):559572.

[18]SARMA D S,FLTCHER I R,RASMUSSEN B,et al.Archaean Gold Mineralization Synchronous with Late Cratonization of the Western Dharwar Craton,India:2.52 Ga UPb Ages of Hydrothermal Monazite and Xenotime in Gold Deposits[J].Mineralium Deposita,2011,46(3):273288.

[19]WILLIAMS I S,BUICK I S,CARTWRIGHT I.An Extended Episode of Early Mesoproterozoic Metamorphic Fluid Flow in the Reynolds Range,Central Australia[J].Journal of Metamorphic Geology,1996,14(1):2947.

[20]STEIGER R H,JGAER E.Subcommission on Geochronology:Convention on the Use of Decay Constants in Geo and Cosmochronology[J].Earth and Planetary Science Letters,1977,36(3):359362.

[21]LUDWIG K R.SQUID 1.02:A Users Manual[R].Berkeley:Berkeley Geochronology Center,2001.

[22]LUDWIG K R.Users Manual for ISOPLOT 2.49:A Geochronological Toolkit for Microsoft Excel[R].Berkeley:Berkeley Geochronology Center,2001.

[23]HARRISON T M,MCKEEGAN K D,LEFORT P.Detection of Inherited Monazite in the Manaslu Leucogranite by 208Pb/232Th Ion Microprobe Dating:Crystallization Age and Tectonic Implications[J]. Earth and Planetary Science Letters,1995,133(3/4):271282.

[24]万渝生,刘敦一,简平.独居石和锆石SHRIMP UPb定年对比[J].科学通报,2004,49(12):11851190.

WAN Yusheng,LIU Dunyi,JIAN parison of SHRIMP UPb Dating of Monazite and Zircon[J]. Chinese Science Bulletin,2004,49(12):11851190.

[25]杨荣生,陈衍景,张复新,等.甘肃阳山金矿独居石ThUPb化学年龄及其地质和成矿意义[J].岩石学报,2006,22(10):26032610.

YANG Rongsheng,CHEN Yanjing,ZHANG Fuxin,et al.Chemical ThUPb Ages of Monazite from the Yangshan Gold Deposit,Gansu Province and Their Geologic and Metallogenic Implicationa[J].Acta Petrologica Sinica,2006,22(10):26032610.

[26]王鑫琳,张臣,刘树文,等.河北康宝地区花岗岩独居石电子探针定年[J].岩石学报,2007,23(4):817822.

WANG Xinlin,ZHANG Chen,LIU Shuwen,et al.Electron Microprobe Dating of Monazite in Granite from Kanbao Area,Hebei Province[J].Acta Petrologica Sinica,2007,23(4):817822.

[27]PARRISH R R.UPb Dating of Monazite and Its Application to Geological Problems[J].Canadian Journal of Earth Sciences,1990,27(11):14311450.

[28]POITRASSON F,CHENERY S,SHEPHERD T J.Electron Microprobe and LAICPMS Study of Monazite Hydrothermal Alternation:Implication for UThPb Geochronology and Nuclear Ceramics[J].Geochimica et Cosmochimica Acta,2000,64(19):32833297.

[29]SCHANDL E S,GORTON M P.A Textural and Geochemical Guide to the Identification of Hydrothermal Monazite Criteria for Selection of Samples for Dating Epigenetic Hydrothermal Ore Deposits[J].Economic Geology,2004,99(5):10271035.

[30]ZHU Z K,ONIONS R K,BELSHAW N S,et al.Lewisian Crustal History from Insitu SIMS Mineral Chronometry and Related Metamorphic Textures[J].Chemical Geology,1997,136(3/4):205218.

[31]RASMUSSEN B,FLETCHER I R,SHEPPARD S.Isotopic Dating of the Migration of a Lowgrade Metamorphic Front During Orogenesis[J].Geology,2005,33(10):773776.

[32]MCFARLANE C R M,CONNELLY J N,CARLSON W D.Contrasting Response of Monazite and Zircon to a HighT Thermal Overprint[J].Lithos,2006,88(1/2/3/4):135149.

[33]王智琳,许德如,MONIKA A K,等.海南石碌铁矿独居石的成因类型、化学定年及地质意义[J].岩石学报,2015,31(1):200216.

WANG Zhilin,XU Deru,MONIKA A K,et al.Genesis and CHIME Dating on Monazite in the Shilu Iron Ore Deposit,Hainan Province of South China,and Its Geological Implications[J].Acta Petrologica Sinica,2015,31(1):200216.

[34]宋天锐,和政军,万渝生,等.前寒武纪沉积岩中自生独居石的发现及其意义[J].沉积学报,2003,21(1):118124.

SONG Tianrui,HE Zhengjun,WAN Yusheng,et al.Discovery of Authigenic Monazite in Precambrian Sedimentary Rocks and Its Significance[J].Acta Sedimentologica Sinica,2003,21(1):118124.

[35]宋天锐,张巧大,万渝生.一种含自生独居石富钾、富稀土的多硅白云母泥岩[J].沉积学报,2003,21(3):428433.

SONG Tianrui,ZHANG Qiaoda,WAN Yusheng.A K and REE Rich and Authigenic Moazitebearing Phengite Mudstone[J].Acta Sedimentologica Sinica,2003,21(3):428433.

[36]EVANS J,ZALASIEWICZ J.UPb,PbPb and SmNd Dating of Authigenic Monazite:Implications for the Diagenetic Evolution of the Welsh Basin[J].Earth and Planetary Science Letters,1996,144(3/4):421433.

[37]洪文兴,朱祥坤.独居石微粒微区成分分布的研究[J].高校地质学报,2000,6(2):167172.

HONG Wenxing,ZHU Xiangkun.A Microanalysis Study on Monazite Composition Distribution[J].Geological Journal of China Universities,2000,6(2):167172.

[38]MCNAUGHTON N J,RASMUSSEN B,FLETCHER I R.SHRIMP Uraniumlead Dating of Diagenetic Xenotime in Silicialastic Rocks[J].Science,1999,285:7880.

[39]聂宗笙.华北地区的燕山运动[J].地质科学,1985,20(4):320333.

NIE Zongsheng.The Yanshanian Movement in the North China[J].Scientia Geologica Sinica,1985,20(4):320333.

上一篇:公路桥梁施工中的预应力技术研究 下一篇:大V的移动城堡