如何提高混凝土裂缝控制措施

时间:2022-08-15 09:09:24

如何提高混凝土裂缝控制措施

摘要:混凝土裂缝产生的主要原因,混凝土裂缝问题是一个普遍存在而又不易解决的工程实际问题,本文分析了裂缝的种类和产生的原因并提出了在预付、施工等方面的控制措施。关键词:混凝土; 裂缝; 预防; 控制措施。控制混凝土裂缝的措施混凝土结构的宏观裂缝产生的原因主要有三种,一是由外荷载引起的,这是发生最为普通的一种情况,即按常规计算的主要应力引起的;二是结构次应力引起的裂缝,这是由于结构的实际工作状态与计算假设模型的差异引起的;三是变形应力引起的裂缝,这是由温度、收缩、膨胀、不均匀沉降等因素引起的结构变形,当变形受到约束时便产生应力,当此应力超过混凝土的抗拉强度时就产生裂缝。前两种主要是由设计原因引起,第三种是由于施工原因产生的,根据产生原因的不同第三种原因引起的裂缝一般可分为收缩裂缝、温度裂缝、外力引起的裂缝等。

关键词:混凝土抗拉强度;约束;温度收缩应力;表面裂缝;贯通裂缝;收缩变形

中图分类号: TV543 文献标识码: A

前言:混凝土是以胶凝材料、水、细骨料、粗骨料、需要时掺入外加剂和矿物掺合料,按适当比例配合,经过均匀拌制、密实成型及养护硬化而成的人工石材。在施工过程中,建筑工程中,混凝土结构的裂缝较为普遍,经常发现混凝土结构在成型后,出现各种裂缝。虽然这类裂缝属非结构性裂缝,一般不致影响构件承载力和结构安全,但却会影响结构的耐久性和整体性。同时也会给使用者感官和心理上造成不良影响。本文对大体积混凝土的裂缝成因与措施做如下论述。

1.混凝土裂缝产生的主要原因

1.1混凝土结构的宏观裂缝产生的原因主要有三种:

a、由外荷载引起的裂缝,这是发生最为普遍的一种情况,即按常规计算的主要应力引起的。

b、结构次应力引起的裂缝,这是由于结构的实际工作状态与计算假设模型的差异引起的;

c、变形应力引起的裂缝,这是由温度、收缩、膨胀、不均匀沉降等因素引起的结构变形,当变形受到约束时便产生应力,当此应力超过混凝土抗拉强度时就产生裂缝。

1.2当混凝土结构物产生变形时,在结构的内部,结构与结构之间,都会受到相互影响.相互制约,这种现象称为约束。

1.3建筑工程中的大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,由此形成的温度收缩应力是导致钢筋混凝土产生裂缝的主要原因。

2.控制大体积混凝土裂缝的措施

为了有效地控制有害裂缝的出现和发展,必须从控制混凝土的水化升温、延缓降温速率、减少混凝土收缩、提高混凝土的极限拉伸强度、改善约束条件和设计结构等方面全面考虑,结合实际采取措施。

2.1降低水泥水化热和变形

选用低水化热或中水化热的水泥品种配置混凝土,如矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰水泥、复合水泥等。

充分利用混凝土的后期强度,减少每立方米混凝土中水泥用量。

使用粗骨料,尽量选用粒径较大、级配良好的粗骨料;控制砂石含泥量;

在基础内部预埋冷却水管,通入循环冷却水,强制降低混凝土水化热温度。

在厚大无筋或少筋的大体积混凝土中,掺加总量不超过20%的大石块,减少混凝土的用量,以达到节省水泥和降低水化热的目的。

在拌合混凝土时,还可掺入适量的微膨胀剂或膨胀水泥,使混凝土得到补偿收缩,减少混凝土的温度应力。

改善配筋。

温度筋分布细密,一般用φ8钢筋,双向配筋,间距15cm.这样可以增强抵抗温度应力的能力。上层钢筋的绑扎,应在浇筑完下层混凝土之后进行。

设置后浇缝。当大体积混凝土平面尺寸过大时,可以适当设置后浇缝,以减少外应力和温度应力。

2.2降低混凝土温度差

选择较适宜的气温浇筑大体积混凝土,尽量避开炎热天气浇筑混凝土,夏季可采用低温水或冰水搅拌混凝土,可对骨料喷冷水晒,运输工具如具备条件也应搭设遮阳设施,以降低混凝土拌合物的入模温度。

掺加相应的缓凝型减水剂,如木质素磺酸钙等。

在混凝土入模时,采取措施改善和加强模内的通风,加速模内热量的散发。

2.3加强施工中的温度控制

在混凝土浇筑之后,做好混凝土地保温保湿养护,缓缓降温,充分发挥徐变特性,减低温度应力。

采取长时间的养护,规定合理的拆模时间,延缓降温时间和速度,发挥凝土的“应力松弛效应”。

加强测温和温度监测与管理,实行信息化控制,随时控制混凝土内的温度变化,内外温差控制在25℃以内,基面温差和基底面温差均控制在20℃以内,及时调整保温及养护措施,使混凝土地温度梯度和湿度不至过大,以有效控制有害裂缝的出现。

合理安排施工程序,控制混凝土在浇筑过程中均匀上升,避免混凝土拌合物堆积过大高差.在结构完成后及时回填土,避免其侧面长期暴露。

2.4改善约束条件,消减温度应力

采取分层或分块浇筑大体积混凝土,合理设置水平或垂直施工缝,或在适当的位置设置后浇带,以放松约束程度,减少每次浇筑长度的蓄热量,防止水化热的集聚,减少温度应力。

对大体积混凝土基础与岩石地基,或基础与厚大的混凝土垫层之间设置滑动层,如采用平面浇沥青胶铺砂或刷热沥青或铺卷材.在垂直面、健槽部位设置缓冲层,如铺设30~50mm厚沥青木丝板或聚苯乙烯泡沫塑料,以消除嵌固作用,释放约束应力。

2.5提高混凝土的极限拉伸强度

选择良好级配的粗骨料,严格控制其含泥量,加强混凝土的振捣,提高混凝土密实度和抗拉强度,减小收缩变形,保证施工质量。

采取二次投料法,二次振捣法,浇筑后及时排除表面积水,加强早期养护,提高混凝土早期或相应龄期的抗拉强度和弹性模量。

在大体积混凝土基础内设置必要的温度配筋,在截面突变和转折处,底顶板与墙转折处,孔洞转角及周边,增加斜向构造配筋,以改善应力集中,防止裂缝出现。

3.收缩裂缝 混凝土的收缩裂缝包括塑性收缩裂缝、干缩裂缝、沉降收缩裂缝等3.1 塑性收缩裂缝

3.1.1 现象

裂缝在新浇结构、构件表面出现,形状不规则,类似干燥的泥浆面,裂缝较浅,多为中间宽两端细,且长短不一,互不连贯,大多在混凝土初凝后,当外界气温高风速大,气候干燥的情况下出现。

3.1.2 原因分析

(1)混凝土浇筑后,表面没有及时覆盖,受风吹日晒,表面游离水蒸发过快,产生急剧的体积收缩,而此时的混凝土的早期强度低,不能抵抗这种变形应力而导致开裂。

(2)使用收缩率较大的水泥,水泥用量较多,或使用过量的粉砂,或混凝土水灰比过大。

(3)混凝土流动度过大,模板、垫层过与干燥,吸水大。

(4)浇筑在斜坡上的混凝土,由于重力作用有向下流动的倾向,也有可能产生。

3.1.3预防措施

(1)配制混凝土时,应严格控制水灰比和水泥用量,选择级配良好的石子,减小空隙率和砂率;同时,要振捣密实,以减少收缩量,提高混凝土早期的抗裂强度。

(2)浇灌混凝土前,将基层和模板浇水湿透;混凝土应振捣密实,并注意对板面进行二次抹压,以提高抗拉强度、减少收缩量;

(3)混凝土浇筑后,表面及时覆盖,认真养护,并适当延长养护时间;长期露天堆放的预制构件,可覆盖草帘、草袋,避免曝晒,并定期适当洒水,保持湿润;在高温、干燥及刮风天气,应及早喷水养护,或设挡风设施。薄壁构件应在阴凉地方堆放并覆盖,避免发生过大湿度变化;

(4)可在混凝土表面喷一度氯偏乳液养护剂,或覆盖塑料薄膜或湿水袋,使水分不易蒸发。

3.1.4治理方法

(1)如混凝土仍保持塑性,应及时抹压一次,再护盖养护,或重新振捣办法来消除;

(2)如已硬化,可向裂缝内装入干水泥粉,然后加水湿润,或在表面抹薄层水泥浆进行处理。

4.结束语

重视温度监测,实际施工中应随时监测混凝土内部温度和内外温差的变化趋势,并据此来调整温控措施,确保混凝土不开裂。影响大体积混凝土开裂的因素很多,应从造成裂缝的各种原因着手,采取全面防治措施,并根据工程具体情况确定防裂重点。

参考文献:

[1]《普通混凝土配合比设计规程》2002

[2]《大体积混凝土施工规范》2009

[3]《通用硅酸盐水泥》2007

上一篇:浅析公路工程的成本管理控制 下一篇:止水帷幕(TRD工法)施工工艺及监理工作方法