机电一体化在设备检修工作中的应用

时间:2022-08-14 01:35:57

机电一体化在设备检修工作中的应用

摘要:车辆是铁路交通中的核心部分,一切交通的建设及维护都是为车辆安全而平稳运行这个最重要目的而服务的。车辆检修正是其中重要的环节,合理地开展车辆检修工作对确保车辆安全运行、提升车辆运行品质以及降低运营成本有十分重要的意义。

关键词:机电一体化列车车辆检修 计算机系统

中图分类号:TV85文献标识码: A

一、机电一体化概念

“机电一体化”名称是日本安川电机公司在19世纪60年代末的商业注册时创用的,由机械学(mechanic)词头和电子学((electronics)词尾组合而成mechatronics。目前已在世界范围内得到认同,成为一正式英文名词。机电一体化是指在机构的主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高叮靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统上程技术。其中,机电一体化涵盖技术和产品两个方面,各种技术的相勺_关系如图1所示。机械一体化产品小仅是人类肢体的延仲,还是人类感官与头脑的延仲,具有智能化的特征是机电一体化与机械电气化在功能上的本质区别。

图1 机电一体化技术

二、机电一体化在铁路车辆中的应用

早在18世纪,铁路开始之初,铁路车辆设计主要由机械工程师完成,并无电子学或反馈控制的引入。铁路行业属于成本密集型,轨道基础设施的铺造和维护、新车的研制与维修等都是大资金投入,都制约着铁路行业,让其谨慎前行。为提高铁路与其他交通模式的竞争力,铁路系统应逐步降低成本和能耗,这即意味着车辆应更加轻巧,机械结构更加简易

铁路车辆悬挂发展的前125年,其特性都是利用试验方法来表征。

1809年,车辆转向架就已独立命名,但欧洲花了将近40年才在公共铁路中使其规律化。自从19世纪60年代车辆动力学的出现,车辆悬挂系统的有效分析才算真正开始,计算机也越来越多地应用于完整车辆性能的分析和预测中,并在机械结构上获得了独特创新,如交叉支承、迫导向转向架和单轴转向架等。“主动悬挂”的到来,才真正预示着车辆设计进入“机电一体化设计阶段。

1、摆式列车

摆式列车,是一种特殊主动二系悬挂实例,其倾摆机构是机电一体化的典型结构,是小半径曲线线路提速车辆的最佳选择,可使车辆在普通路轨上的弯曲路段高速驶过而无需减速。欧洲国家大部分都发展了此类车辆,意大利的Pendolino,瑞典的X2000、西班牙的Talgo,德国VT611动车组以及瑞士的SIG。

图2典型摆式列车截面 图3摆式列车设计发展

摆式车辆通过曲线时,主动向曲线内侧倾斜,降低乘客所感受的离心加速度。图2是瑞典ADtranz设计的X2000车辆截面图,车辆两侧空簧作为二系悬挂,安装于倾摆摇枕之上,通过倾斜摆杆与转向架连接,形成倾摆运动。倾斜摆杆能有效倾斜车体,且倾斜中心在车体地板面上。在欧洲,极力推荐采用机电作动器来取代早期使用的液压作动器。图3是意大利Pendolino截面,由Fiat提出,2000年用于瑞典,2001年用于英国。早期采用两钢弹簧簧作二系,液压作动器垂直安装于车辆中,受电弓通过一机械结构与转向架相连,以避免与车体一同倾斜而导致的弓网离线问题。在SIG设计上,中间安装一个大囊式空簧作为二系,用环形滚轴梁取代机械倾摆杆,设计独立控制作动器对受电弓进行倾摆补偿,作动器选择上主要采用快速响应的机电作动器。

倾摆“硬件”―机械结构在小断地改进,那么倾摆“软件”―倾摆控制策略又是如何改变的呢?现代的控制理论发展都很成熟,关键在于软硬件与实际错综复杂上况的配合,尤其对于控制系统的输入提取刚开始,采用最直观的控制方法,在车体上安装加速度传感器,计算横向加速度调节量,驱动同向的作动器,采用经典的负反馈逐步调节。但突然消失的横向加速度会使乘客感觉车辆存在运动问题,且倾摆机构在缓和曲线段反应慢。其后,则将加速度传感器装于不倾斜的结构―转向架上,在反馈环中测试倾摆角再提供倾摆角度命令信号,抵消60一70%的曲线通过时叠加的离心加速度。但传感器测试值包括曲线加速度以及由轨道小平顺引起的横向加速度,则需要滤波,否则将影响直线运行乘坐舒适度。此策略由会导致曲线进入区段的判定延迟。最后,利用车端信号的提前预测设计,以避免此问题的发生,较合理地实现了和机电一体化设计。

2、主动二系悬挂

若不大改变车辆结构,又要更进一步改善更高速车辆对轨道不平顺的响应,提高乘坐质量,则关键设计是车辆二系悬挂的阻尼设计,目前较多应用机电控制,使普通的阻尼器变为阻尼可变且可控的减振器,“天棚阻尼”就是一典型设计。天棚阻尼控制是由美国D. Karnopp教授提出,是对车辆横向振动进行控制。假设在车体和一个“固定墙”之间安装一个虚拟的“天棚减振器”(如图4所示),这个虚拟减振器在列车运行时始终提供这样的阻尼力:力的大小只与车体绝对速度有关,与转向架和车体之间的相对速度无关、“天棚阻尼”控制因不需要建立系统的数学模型且极易实现,从而得到广泛应用。

图4天棚阻尼控制原理图

可变阻尼减振器阻尼的调节通常有两种方法―---调节减振器的节流孔大小和液体黏度大小,实际操作中,则因控制策略和执行机构的不同,而产生了不同类型的主动、半半动悬挂方式,尤其在日本、法国、瑞典(ABB)和英国等研究较多。目前,最优控制、鲁棒控制、自适应控制和智能控制等现代控制理论都在逐步应用于车辆悬挂控制,电磁作动器以及磁流变作动器等也都不断改进,软硬件同步发展和应用,不断提升着车辆机电一体化水平。

当下机电一体化设计理念最创新的当属主动车轮的设计。近两个世纪的车辆布置,都是1个车体、2个转向架和4个轮轴固接轮对(固接式),固定的结构始终存在一世界难题―蛇行,一二系悬挂系统也仅是抑制运动失稳,调优车体内部乘坐舒适度。而主动车轮/独立车轮/轮对的构想,打破了原有机械结构,两车轮旋转独立,分别控制,直线运行与曲线通过同时兼顾,运用了更多的机电控制。但,因车辆速度提升限制、控制硬件―传感器、控制器与作动器的相互协调问题、机电一体化单元的可靠性、复杂的车辆运行工况的难以预测问题以及车辆单元部件的繁多等,目前此设计应用推广范围尚窄。

另外,车辆的牵引和制动系统,这部分与电力电子更加相关,电力驱动、交流电机、轮毂电机以及电力再生设备都是高度集成,功能性强,都尝试利用先进的电力控制来操作轮轨粘滑特性,整合控制系统来优化对接触斑的利用。更加特殊的磁悬浮车辆中,更加繁杂地运用了机电一体化思想,将电、磁、机都很好的结合在一起,但此设计的社会价值和经济价值一直受到质疑,有待技术的逐步成熟来缓解。当然,除了铁路车辆本身,与之相配套的设备,如线路、售票系统(铁路客票制票机和移动补票系统等)、车站以及车辆维修基地等,都有机电一体化系统的参与。

三、车辆检修管理信息系统数据库设计

1、数据库系统及其结构

建立数据库是开发车辆检修管理信息、系统的基础。数据库、数据库系统、数据库管理系统、数据库应用系统是数据库技术最基本的4个概念。

数据库(database,DB)是按照数据结构来组织、存储和管理数据的仓库,随着信息技术和市场的发展,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,比如最简单的存储有各种数据的表格以及能够进行海量数据存储的大型数据库系统。

数据库系统(database systems,DBS)是由数据库及其管理软件组成的系统。它是一个实际可运行的存储、维护和应用系统提供数据的软件系统,是存储介质、处理对象和管理系统的集合体。

数据库管理系统(database management system,DBMS)是一种操纵和管理数据库的系统软件,是数据库系统的核心。它是位于用户和操作系统之间的一个数据管理软件。它对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。用户通过DBMS访问数据库中的数据,数据库管理员也通过DBMS进行数据库的维护工作。

数据库应用系统(database application system,DBAS)是指系统开发人员利用数据库系统资源开发出来的面向某一类事件应用的应用软件系统,如工资管理系统、本文的车辆检修管理信息系统等.

图5数据库系统示意图

2、数据库结构设计

合理的数据库结构设计能够提高系统的运行效率,保障数据的完整性及一致性,是系统实现的有力保障。通过上一章的需求分析,结合结构设计的步骤要求,在确定了本系统中的实体后,所设计的车辆检修管理信息系统的数据库结构图如图6所示。

图6系统数据库设结构图

由图6可知,在MySQL数据库中建立并存放了5个表,信息表(liewei -info )、菜单信息表(menu- info )、检修计划表C overhaulplan_ info )、系统用户表(user-info)和用户菜单表分别是:列位(user-menu)。

1)列位信息表(liewei info )

列位信息表存放了列位管理、调车管理、入库管理、出库管理及移库管理所包含的数据项,例如列位号,车号,在停车状态,列车出入库时间等。该表结构如表1所示。

表1列位信息表

2)菜单信息表(menu -info)

菜单信息表存放系统所有菜单,包括名称、id、点击后的对应操作等。该表结构如表2所示。

表2菜单信息表

3)检修计划表(overhaulplan-info )

检修计划表存放关于检修计划的相关数据项,比如列车号、修程、受检停车列位、承修班组、工单号等。

表3计划检修表

4)系统用户表(user info)

系统用户表存放系统用户信息,包括用户类型、账号(工号)及密码。

表4系统用户表

5)用户菜单表(user menu

用户菜单表存放用户各自拥有的菜单,也就是对系统的操作权限。

表5用户菜单表

结语:

随着我国轨道交通规模的不断扩大,一方面车辆检修工作量会越来越大,另一方面,为运营安全提供保障作用的车辆检修工作的重要性更加突出。而传统的车辆检修模式是按照规定的固定周期进行的周而复始的计划检修模式,检修工作监管不力,检修效率低,流程的随意性大。因此,有必要建立一套完整的车辆检修管理信息系统,并将其运用到车辆段的检修工作中去,进行系统管理,以期提高车辆检修效率及质量,保障车辆运行安全,提升车辆运行品质。

参考文献:

[1]许平洋.基于可靠性的城轨车辆维修模式及应用.电力机车与城轨车辆,2008.06.

[2]冷庆君.我国轨道交通车辆检修模式及建议.我国轨道车辆,2011.01

[3]李彦青.动车组维修管理信息系统研究与开发.北京交通大学硕士学位论文,2008.01。

[4]朱鹏,齐金平,蒋兆远.机车检修信息化方案的设计与实施.中国铁路,2009.03.

上一篇:回热器汽车空调系统的研究 下一篇:基础工程施工管理项目部人力资源管理优化建议