电磁发射技术及系统模型

时间:2022-08-11 08:56:24

电磁发射技术及系统模型

【摘要】 电磁发射技术目前被广泛应用军事、民用方面等,逐渐取代传统火力、机械等发射方式,因此对于电磁发射系统建立数值仿真模型是必要的。通过分析发射电路特征和系统运动特性,建立电磁发射系统模型,并由此导出系统方程,选择有较好稳定性的Treanor算法求解非线性常微分方程组,得到稳定解建立的系统模型。

【关键词】 电磁发射 数学模型 系统方程

Multi-level electromagnetic launch system modeling

XIA Yujie (Anhui University Communication Engineering Anhui Hefei 230601 )

Abstract:Electromagnetic emission technology is widely used in military, civilian aspects and gradually replace the traditional firepower, machinery and other means of transmission. So establishing numerical simulation model of the electromagnetic launch system is necessary. By analyzing the characteristics of the transmission circuit and system kinematics, establish electromagnetic launch system model, and thus derived system of equations, choose a better stability Treanor algorithm for solving nonlinear ordinary differential equation, system model established stable solution.

Keyword:electromagnetic emissions; mathematical model; system of equations

一、引言

现有的化学式推进装置有许多缺点,传统的化学式弹射会产生强光、强冲击波以及弹射系统过于庞大和复杂。随着脉冲功率技术、脉冲强磁场、等离子体技术、新材料技术、高能工质技术及测试等相关技术的发展,电磁弹射技术的进展为改进传统弹射方法提供了可能。

二、电磁发射技术分类及工作特点

电磁推进技术对比于传统的机械推进装置和化学高速发射装置来说,具有以下突出优点:(一)能源简单、成本低;(二)可移动性强、工作稳定;(三)电磁推进装置清洁环保,无噪音及其它污染;(四)对推进装置的结构限制较小。电磁发射按照结构不同可以分为导轨式、同轴线圈式和磁力线重接式3种,表3-1分别对三种电磁发射结构进行说明[1]:

2.1导轨型电磁推进器

导轨式电磁推进器是由两条平行的金属导轨和一个抛体电枢及载荷,以及高功率脉冲电源组成,如图2-1所示。电枢位于两导轨之间被加速运动,可以是高导电率的固体金属,也可以是等离子体,或者是两者的混合体。高功率脉冲电源通过开关向导轨和电枢回路通电,提供脉冲大电流,在两平行导轨之间产生强大的磁场,与流经电枢的电流相互作用,产生强大的电磁力,该力推进抛体电枢加速运动。

2.2同轴线圈型电磁推进器

同轴线圈式电磁推进器由固定不动的驱动线圈、被加速的抛体线圈或电枢和激励电源组成。当激励电源通过开关向驱动线圈馈以电流时,驱动线圈中产生磁场或磁行波,同时使抛体线圈载流或电枢感应电流驱动线圈中的磁场对抛体线圈电流产生电磁力=,电磁力含有纵向和横向两个分量,纵向力拉动或推动抛体线圈加速运动。其结构如图2-2所示[2]:

2.3重接型电磁推进器

变化的磁场在抛体上感生涡流,涡流与重接磁场相互作用产生电磁力。重接型电磁推进过程中系统负互感被正互感取代,电感变化较大, 用于加速抛体的轴向力较大,因此具有更高的效率;重接型电磁推进中抛体受力波动较小,抛体加速运动有更大的稳定性。原理图如2-3所示。

三、电磁发射系统结构

3.1 电磁发射器的系统方程

式中:[L]为各个线圈的自感矩阵;[M]为线圈间的互感矩阵; [I]为定子线圈与抛体的电流列阵;[VC]为电容器组的电压列阵;[C]为电容器组的电容列阵;[R]为电阻矩阵;MP、v、X分别是抛体的质量、速度、位置。该系统方程为非线性方程组,参数的变动性与相互耦合性给解方程组带来了困难。首先要计算其系数阵,需要计算分片抛体与定子线圈间互感、自感与互感梯度。在系统发射的过程中,互感与互感梯度与抛体与定子线圈的相对位置有关,因此要进行多次重复计算,选择计算方法时要优先考虑算法效率与计算精度。

3.2 单层螺线管的互感方程

互感梯度的计算转换成四项单重积分运算,利用高斯求积公式可以增加计算精度的可控性。

3.5系统方程的刚性特征

时间常数是通常用来表示指数函数衰减,如果方程组中的时间常数相差很大,方程中的变量变化速度相差较大,导致数值解法误差变大,则此常微分方程组特性为刚性性质,刚性方程又称病态方程。描述刚性方程分量变化差异的量化值为刚性比。

刚性由微分方程自身性质决定,电磁发射中的系统方程组呈现刚性,传统的常微分方程组的解法不适用,所以,求解系统方程组选择对求解刚性方程良好稳定性的 Treanor 算法[4]。

四、结语

电磁发射与以往的发射方式相比具有更高的出速度、发射成本低、准备周期短、发射隐蔽等优点,因此它在武器装备、导弹防御系统、空间应用等许多领域内有广泛的应用前景。目前仍存在着一些有待解决的问题,为电磁发射系统建立恰当的数值仿真模型尤为重要,这会对我国电磁发射技术发展起到关键性作用。

参 考 文 献

[1] Wang Ying, Richard A.Marshall, and Cheng Shukang. Physics of Electric Launch[M].Beijing: Science Press, 2004.

[2]王莹,肖峰.电炮原理[M].北京:国防工业出版社.1995.

[3] 闵飞炎, 杨明.电磁发射技术的关键问题及其数值模拟[J].固体火箭术.2009 .

[4]冯桂云.Treanor算法中的病态现象[J].数值计算与计算机应用.1986.

上一篇:新时期计算机软件开发技术的应用及发展趋向 下一篇:基于单片机的液晶GPS硬件设计