例析酶曲线图的变化

时间:2022-07-25 07:21:51

影响酶活性的因素很多,如温度、pH.影响酶促反应的因素除影响酶活性的因素外,还涉及酶浓度和底物浓度等。在研究酶问题时涉及很多类型的曲线,通过改变曲线中某一因素会引起曲线中相关“点”或曲线走势的变化.

1.曲线中相关“点”的变化

例1下图甲是H2O2酶活性受pH影响的曲线,图乙表示在最适温度下,pH=b时H2O2分解产生的O2量随时间的变化曲线.若该酶促反应过程中改变某一初始条件,以下改变正确的是

A.pH=a时,e点下移,d点左移

B.pH=c时,e点为0

C.温度降低时,e点不移动,d点右移

D.H2O2量增加时,e点不移动,d点左移

解析O2的最大释放量只与H2O2的量有关,与酶的活性无关,与pH=b时相比,pH=a时酶的活性下降,e点不变,d点右移;H2O2不稳定,在H2O2酶失活时,H2O2仍能分解;温度降低时酶的活性降低,e点不变,但H2O2完全分解所用的时间延长,d点右移;增加H2O2量,e点上移,d点右移.答案:C

2.曲线走势的改变

例2将新鲜萝卜磨碎、过滤得到提取液.在温度为30℃的条件下,取等量提取液分别加到四个盛有图1pH分别为3、5、7、9的100 mL体积分数为3%的过氧化氢溶液的烧杯中,结果每一个烧杯都产生气体,然后,将加入四个烧杯中提取液的量减半,重复上述实验.在相同时间内,分别测得两次实验中过氧化氢的含量变化并绘制成图1所示曲线,请回答:

(1)该实验的目的是.

(2)该实验中的自变量是,因变量是.

(3)曲线A和B中,过氧化氢含量的最低点位于横坐标同一位置的原因是.

(4)曲线A是第次实验的结果,原因最可能是.

(5)图2表示萝卜的过氧化氢酶在体外的最适条件下,底物浓度对酶所催化反应的速率的影响.请在图上画出:①如果在A点时,将温度提高5℃时的曲线变化;②如果在B点时,向反应混合物中加入少量同种酶的曲线变化;③如果在C点时加入大量pH为1.8的HCl的曲线变化.

解析要确定实验的目的,可围绕自变量和因变量进行分析.本实验中因变量是过氧化氢含量的多少,自变量包括4个烧杯中不同的pH和加入4个烧杯中的提取液的量的多少,据此可以确定实验的目的是探究过氧化氢在不同pH条件及不同量的提取液条件下分解图2图3的快慢或探究等量的提取液在不同pH条件下对过氧化氢分解的影响及同种不同量提取液在相同pH条件下对过氧化氢分解的影响.曲线A和B中过氧化氢含量的最低点对应的pH为最适pH,过氧化氢分解的速度最快,这说明同一种酶在相同条件下的最适pH相同.曲线A与B对照,说明在相同条件下过氧化氢分解的速度较慢,应该是酶的数量的影响,因此,曲线A的实验结果由第二次实验得出.由于图2曲线本身是在最适条件下形成的,如果在A点升高温度,则酶活性会减弱,反应速率会处于较低水平;如果在B点,往反应混合物中加入少量同种酶,反应速率会进一步升高;如果在C点加入大量pH为1.8的HCl,则酶可能变性失活,反应速率会迅速下降,直至反应停止.

答案:(1)探究过氧化氢在不同pH条件及不同量的提取液条件下分解的快慢(或探究等量的提取液在不同pH条件下对过氧化氢分解的影响及同种不同量提取液在相同pH条件下对过氧化氢分解的影响)

(2)pH的大小和提取液的量 单位时间产生气泡的多少(或单位时间内过氧化氢的减少量)

(3)同一种酶的最适pH不变

(4)二A中所含酶的量较少,相同时间分解的过氧化氢量较少

(5)见上图:

例3动物脑组织中含有丰富的谷氨酸脱羧酶,能专一催化1 mol谷氨酸分解为1 mol氨基丁酸和1 mol CO2.某科研小组从小鼠的脑中得到该酶后,在谷氨酸起始浓度为10mmol/L,最适温度、最适pH值的条件下,对该酶的催化反应过程进行研究,结果见图38-1和图38-2.

图38-1产物CO:浓度随时间变化曲线图

(注:酶浓度固定)38-2酶催化反应速率随酶浓度变化曲线

(注:反应物浓度过量)请根据以上实验结果,回答下列问题:

(1)在图38-1画出反应过程中谷氨酸浓度随时间变化的曲线(请用“1”标注).

(2)当一开始时,将混合物中谷氨酸脱羧酶的浓度增加50%或降低反应温度10℃,请在图38-1中分别画出理想条件下CO2浓度随时间变化的曲线(请用“2”标注酶浓度增加后的变化曲线,用“3”标注温度降低后的变化曲线),并分别说明原因.

(3)重金属离子能与谷氨酸脱羧酶按比例牢固结合,不可解离,迅速使酶失活.在反应物浓度过量的条件下,向反应混合物中加入一定量的重金属离子后,请在图38-2中画出酶催化反应速率随酶浓度变化的曲线(请用“4”标注),并说明其原因.

解析本题考查酶的作用以及影响酶活性的因素等相关知识.①根据题干知谷氨酸脱羧酶发生催化作用时,每分解1 mmol谷氨酸会产生1 mmol CO2,即反应过程中谷氨酸的减少量(溶液中谷氨酸剩余量等于谷氨酸起始量减去减少量)与CO2的生成量相等,因此,根据曲线中CO2浓度随时间的变化,可得到严格的谷氨酸浓度随时间变化变化减少的数量曲线.②在一定范围内,增加酶浓度加速化学反应速率,但由于反应物总量不变,因此,最终反应生成物总量不变,增加酶浓度仅是使化学反应提前达到平衡.③当反应处于最适温度下,再降低或升高反应温度时,酶催化的活性将会下降,化学反应速度减慢,使反应达到平衡的时间延长.④重金属离子与酶结合,使酶失活,当加入的金属离子都与酶结合完全后,再加入的酶就呈游离状态,具有催化活性.根据图2中曲线,可知在酶浓度较低时,随着酶浓度的变化,催化反应速率与酶浓度呈正比变化.

答案:(1)见曲线1

(2)当谷氨酸脱羧酶的浓度增加50%时,见曲线2,其原因:酶量增加50%,酶催化反应速率相应提高,反应完成所需时间减少. 当温度降低10℃时,见曲线3,其原因:温度降低,酶催化反应速率下降,但 酶并不失活,反应完成所需时间增加.

(3)见曲线4(注:曲线4为一条不经过原点的平行直线,平移距离不限).原因: 一定量的重金属离子使一定量的酶失活,当加入的酶量使重金属离子完全与酶结合后,继续加入的酶开始表现酶活力,此时酶的催化反应速率与酶浓度变化的直线关系不变.

上一篇:探究型教学模式在高中生物课堂的运用 下一篇:走进化学新课程构建化学新课堂