纳米材料在化学化T领域中的应用分析

时间:2022-07-21 11:17:03

纳米材料在化学化T领域中的应用分析

摘要:纳米材料具有独特的物理性质以及化学性能,在受到社会的高度重视时,它在社会生产生活的各个领域内都发挥着重要的价值,并且具有很大的发展空间,本文以纳米材料的基本特性为基础,探讨其在化学化工领域内的实际应用情况,推进了化学化工行业的不断发展进步,仅供相关人员参考。

关键词:纳米材料;化学化工领域;应用

基于现代科学技术不断进步的基础上,纳米材料是一种新型材料,具有独特的性质,在特殊结构层次的影响下,表面效应、小尺寸效应以及宏观量子隧道效应是其主要的特点。在化学化工领域内,纳米材料具有良好的应用价值,以下进行具体分析。

1纳米材料及其特性

纳米材料是一种新型材料,三维空间中至少有一维处于纳米尺度,或者以纳米尺度作为基本结构,该材料的尺寸结构特殊,相当于10-100个原子紧密排列在一起。纳米科技将成为21世纪科学技术发展的主流,它不仅是信息技术、生物技术等新兴领域发展的推动力,而且因其具有独特的物理、化学、生物特性为涂料等领域的发展提供了新的机遇。

纳米材料主要由纳米晶粒和晶粒界面两部分组成,其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面(6×1025m3/10nm晶粒尺寸),晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子结构互不相关,使得纳米材料成为介于晶态与非晶态之间的一种新的结构状态。纳米材料主要有四方面特性,分别是表面效应、小尺寸效应以及宏观两字隧道效应,以下分别进行具体分析:

一是表面效应,纳米材料的表面效应是指纳米粒子表面原子数与总原子数的比例值随着粒径变小而急剧增长后所导致的性质改变。根据相关研究表示,伴随着粒子直径的缩短,避免原子个数的增长速度迅猛,而表面原子由于周围缺乏相邻原子,呈现不饱和性状态,强化了纳米粒子的化学活性,从而使得纳米材料能够在吸附、催化等作用上明显的优势。

二是小尺寸效应。小尺寸效应即为纳米粒子的粒径小于或等于超导态的相干波长时,其周期性的边界条件将被损害,从而使得纳米材料的化学性质、催化性质相对于其他材料来说有着明显的区别。小尺寸效应不单单显著扩展了纳米材料的物理与化学特性范围,并且大大拓展了其应用领域。

三是宏观量子隧道效应。该效应主要是指纳米粒子能穿越宏观系统的壁垒而出现变化的一种特征。这一效应对纳米材料的基础研究与实际应用都有着十分关键的作用。宏观量子隧道效应限制了磁盘对信息存储量的限制,明确了现代微电子元件微型化的极限。

四是量子尺寸效应。该效应主要是指纳米粒子尺寸持续减少到某一数值时,纳米能级周边的电子能级可以转变为分离能级粒。这一效应使得纳米粒子拥有高水平的光学非线性、光催化性等特征。

总的来说,纳米材料与其他材料不同,拥有众多与众不同的特性,这使得其在力学、磁学、热学等各个领域都拥有十分重要的应用价值,并给资源利用拓展了更大的空间。

2纳米材料在化学化工领域内的应用

2.1在环境保护方面的应用

纳米材料以其自身基本特性在环境保护领域内发挥着重要的作用,为空气污染与水体污染治理等提供了可靠的技术支持,改善了空气与水体质量,满足可持续发展理念下环境保护的基本要求。

就纳米材料在空气净化方面的作用来看,其具有细微的颗粒尺寸,并且纳米微粒表面形态特殊,粒径大小各不相同,对着粒径的减少纳米微粒表面粗糙状态加剧,最终形成凹凸不平的原子台阶,从而对空气污染进行科学化治理,提高空气净化效果。纳米材料与技术在汽车尾气超标报警器与净化设备中也具有良好的应用效果,能够有效提高设备性能,从而切实减少汽车排放尾气中所含的有毒物质,降低空气污染指数,从而为社会群体的工作与生活提供优质的环境。除此之外,纳米材料与技术在石油提炼工业中也具有良好的应用价值,能够优化脱硫环节,从而提高石油炼化工业的生产效率。

就纳米材料在污水治理方面的作用来看,其能够有效提取污水中的贵金属,去除污水中的有害物质、污染物质和细菌等,从而改善水质,并能够实现循环利用,对于社会生态的稳定平衡发展具有重要意义。水体中的污染物均可以基于纳米材料与技术来进行治理,在有机污染物与无机污染物上并没有明显差异,尤其是纳米为例光催化作用,能够将水体中的污染物制造为矿化物,从而促进改善水质,去除有害污染物的目标得以顺利实现。

2.2在涂料领域内的应用

纳米材料及技术在涂料领域内也发挥着重要的作用,由于纳米材料存在一定表面效应,其结构层次特殊,与其他材料相比纳米材料的性质比较特殊,并具有一定优势与活力。纳米材料在化学化工领域内的应用主要体现在表面涂层方面,并且受到社会群体的高度灌注。纳米材料及其技术的合理应用,推进了涂料领域内表面涂层技术的不断发展,为化学化工领域各项活动的规范进行提供可靠的技术支持。基于传统涂层技术的基础上,纳米复合体系涂层得以实现,并促进了表面涂层技术的不断发展进步。由于纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应和一些奇异的光、电、磁等性能,将其用于涂料中后,除了可以改性传统涂料外,更为重要的是可以制备各种功能涂料,如具有抗辐射、耐老化、抗菌杀菌、隐身等特殊功能的涂料。

基于纳米材料与技术的纳米复合体系涂层的出现和应用,改善了涂料的防护能力,并使得涂料具备防紫外线等作用,使得涂料的使用价值得到明显改善。在汽车装饰喷涂行业中对纳米材料与技术加以合理应用,能够海山汽车漆面的色彩效果;将纳米材料应用于建筑材料涂料中,能够改善热传递效果,并减少透光性,从而优化涂料性能,满足实际使用需求。

2.3纳米材料材料在催化领域中的应用

催化剂在众多化工领域中都占据着十分重要的地位,其能够控制反应时间、提升反应速度与效率,显著提升经济效益,减少对生态环境的污染。首先,光催化反应。纳米粒子作为光催化剂拥有粒径细、催化效率高等优势,十分容易利用光学手段来对界面的电荷转移进行等特点进行研究。例如,利用纳米Ti02应用在高速公路照明装置的玻璃罩面中,由于其拥有较高水平的光催化活性,能够对其表面的油污进行分解处理,从而保证其良好的透视性。又例如,在火箭发射所使用的固体燃料推进器中,如添加大约为1wt%的超细铝或镍颗粒,可以使得其燃烧使用率增加100%。将表面为180m2/g的碳纳米管直接应用在NO的催化还原中,从而可以增加NO的转化率。

3Y束语

总而言之,随着现代科学技术的不断进步,纳米技术得以形成,并在能源、环境保护等方面发挥着重要的作用,纳米技术在化工领域中的合理应用,一定程度上改善了社会群体的生活状态,为新产品的研发与设计以及产品质量的提升提供可靠的技术支持,对于现代社会经济的发展也具有重要意义。在未来发展中,纳米技术也具有广阔的发展空间。

上一篇:高校教师教学能力发展研究 下一篇:数字化校园管理系统的构建和研究