纳米复合材料范文

时间:2023-03-15 03:38:32

纳米复合材料

纳米复合材料范文第1篇

关键词:纳米复合材料;特性;制备技术;应用

1 引言

“纳米复合材料”的提出是在20 世纪80 年代末期,由于纳米复合材料种类繁多以及纳米相复合粒子具有独特的性能,使其一出现即为世界各国科研工作者所关注,并看好它的应用前景。根据国际标准化组织的定义,复合材料就是由2种或2种以上物理和化学性质不同的物质组合而成的一种多相固态材料。在复合材料中,通常有一种为连续相的基体和分散相的增强材料。由于纳米复合材料各组分间性能“取长补短”,充分弥补了单一材料的缺点和不足,产生了单一材料所不具备的新性能,开创了材料设计方面的新局面,因此研究纳米复合粒子的制备技术有着重要的意义。

纳米复合材料由2种或2种以上的固相[其中至少有一维为纳米级大小(1 nm~100 nm) ]复合而成。纳米复合材料也可以是指分散相尺寸有一维小于100 nm的复合材料,分散相的组成可以是有机化合物,也可以是无机化合物。本文在文献的基础上,针对纳米复合材料的主要性能与特点、制备技术、主要应用及应用前景等作了比较详细的介绍和展望。

2纳米复合材料的性能与特点

2. 1纳米复合材料的基本性能

纳米复合材料在基本性能上具有普通复合材料所具有的共同特点:

1) 可综合发挥各组分间协同效能。这是其中任何一种材料都不具备的功能,是复合材料的协同效应所赋予的。纳米材料的协同效应更加明显。

2) 性能的可设计性 。当强调紫外线光屏蔽时,可选用TiO2 纳米材料进行复合;当强调经济效益时,可选用CaCO3 纳米材料进行复合。

2. 2纳米复合材料的特殊性质

由无机纳米材料与有机聚合物复合而成的纳米复合材料具有独特的性能:

1) 同步增韧、增强效应。纳米材料对有机聚合物的复合改性则可在发挥无机材料增强效果的同时起到增韧的效果,这是纳米材料对有机聚合物复合改性最显著的效果之一。

2) 新型功能高分子材料。纳米复合材料以纳米级水平平均分散在复合材料中,没有所谓的官能团,但它可以直接或间接地达到具体功能的目的,比如光电转换、高效催化剂、紫外光屏蔽等。

3) 强度大、弹性模量高。纳米材料加入的有机聚合物复合材料有更高的强度和弹性模量,加入很少量( 3% ~5%,质量分数)即可使聚合物的强度、刚度、韧性和阻隔性得到明显地提高,且纳米材料粒度越细,复合材料的强度、弹性模量就越大。

4) 阻隔性能。对插层纳米复合材料能显著地提高复合材料的耐热性及尺寸的稳定性,层状无机纳米材料可在二维方向上阻隔各种气体的渗透,所以具有良好的阻燃、气密作用。

3纳米复合材料的制备技术

粒子表面处理的方法通常是将一种物质吸附或包覆于另一种物质的表面,两种或多种物质接触紧密或形成一定的化学键。从国内外目前的研究现状来看,纳米复合材料的制备方法主要有下列几种。

2. 1机械化学法

采用机械化学法对超细粉体进行表面改性。机械化学法具有处理时间短、反应过程易控制、可连续批量生产的优点。该法的缺点是易使无机离子的晶型遭到破坏,包覆不均匀,而且一般要求母粒子在微米级,并要先制备单一的超细粒子。

2. 2气相法

气相法制备纳米复合材料的方法主要包括物理气相沉淀法和化学气相沉淀法。

1) 物理沉淀法是最早用来制备单一物质的纳米材料的经典物理制备方法。

2) 气相反应法是以挥发性金属卤化物和氢化物或有机金属化合物为原料,进行气相热分解和其他化学反应来制成超细复合材料,这是合成高熔点无机化合物细粉最引人注目的方法之一。

2. 3液相法

该方法是目前广泛使用的合成纳米粒子的方法,也是制备纳米复合材料的重要方法。

2. 4固相反应法

固相反应法是指固体直接参与化学反应并发生化学变化,同时在固体内部或外部至少有1个过程起控制作用的反应。

3纳米复合材料的应用

纳米复合材料是随着纳米技术的发展而产生的一种新型材料,由于纳米复合材料特殊的性能,所以它一经产生便引起了人们的极大关注,并被广泛地应用于国民经济各领域和军事领域。

在功能材料中,主要可用作纳米复合功能陶瓷的纳米复合材料,金属基纳米复合功能材料、高分子纳米复合功能材料、超导复合材料和纳米复合隐身材料等。在医用器件中,主要用作纳米生物医用信息处理系统、医用纳米机器人;纳米医用药物中的药物性纳米粒子和纳米医用载体。在军事领域中最有代表性的是采用纳米复合材料制备高性能的发动机,美国已开始进入实用阶段。电子对抗领域也是纳米粒子的重要应用领域。

4结束语

纳米复合材料作为一种新型的纳米材料,以其优良的性能和特点以及众多潜在的应用领域正日益成为研究和开发的重点。世界发达国家正在部署的未来10年~15年纳米研究发展规划,无论是美国的“信息高速公路计划”、欧盟的“尤里卡计划”,还是日本的“高技术探索计划”,都已把纳米材料列为重点发展项目 。我国在20世纪80年代末的“八五”期间,就将“纳米材料科学”列入了“国家攀登计划”,国家“863”计划新材料主题也对纳米材料有关科技创新的课题进行了立项研究。20多年来,虽然我国在纳米材料基础研究方面取得了一些令人瞩目的研究成果,但就国家总体重视程度、投资力度、信息和成果的共享以及产业化的程度方面来看,仍与发达国家存在着较大差距。因此,我们应尽快制定纳米技术发展计划,加快纳米复合材料研究和开发的进程。

参考文献:

[ 1 ] 张立德,牟季美. 纳米材料和纳米结构[M ]. 北京:科学出版社, 2001.

[ 2 ] Zhang Rubing. The study on p reparation technology ofnanometer composite materials (Ⅰ) [ J ]. Chinese Journalof Exp losives & Propellants, 1999, 22 (1) : 45248.

[ 3 ] 生瑜,钦,陈建定. 聚合物基无机纳米复合材料的制备方法[ J ]. 高分子通报, 2001 (4) : 9213.

[ 4 ] 李凤生. 特种粉体技术[M ]. 北京:国防工业出版社,2002.

纳米复合材料范文第2篇

关键词:纳米复合材料;纳米粘土;碳纳米管;纳米石墨片;阻隔性;阻燃性

[中图分类号]TQ323.6[文献识别码]A[文章编号]

纳米复合材料的发展还处于成长期,据预测,在未来几十年内,它们将被证明是改变塑料工业面貌的最强有力的事物。只要通过熔融共混或原位聚合在聚合物中添加2%~5%的纳米颗粒,复合材料的热-机械性能、阻隔性能和阻燃性能将会得到戏剧性的提高。在提高耐热性、尺寸稳定性、导电性方面,它们也能超越普通填料和纤维填料。

纳米尺度的增强塑料在汽车和包装业已经市场化,尽管利润不是太高,发展速度也比预期的慢。但是就像热心的研究人员和商业界人土在最近发表的多篇论文所指出的,纳米复合材料的发展步伐将大大加快[1-3]。

美国商业通讯有限公司(BCC)的市场调查报告指出,在2003年,世界市场上的聚合物纳米复合材料的总产量为二千四百五十万镑,价值九千余万美元。BCC还指出,纳米复合材料的市场年增长率将会达到18.4%,到2008年产值将会达到两亿多美元。

在研究开发和实际应用中处于领先地位的纳米填料是纳米粘土、纳米滑石、碳纳米管和石墨片。但是其它如合成粘土、多面体低聚硅倍半氧烷(POSS)、以及像亚麻和苎麻之类的天然纤维也在被积极地开发。

1.最常用的纳米填料

目前最受人们关注并率先投入商业应用的两类纳米填料是纳米粘土和碳纳米管。这两种纳米填料必须进行化学处理来改变其表面性质,以促进填料在树脂中的均匀分散,改善填料和树脂的相容性,这样才有可能达到最佳的改性效果。这两种纳米填料能显著地改善塑料的结构、热性能、阻隔性和阻燃性。碳纳米管还能提高塑料的导电性。

到目前为止,由于价格低,纳米粘土显示出了最强的商业竞争能力,它的价格为2.25-3.25美元/镑,可以被广泛地用于热塑性聚烯烃、绦纶、聚苯乙烯和尼龙等。

研发和应用最多的是蒙脱土(一种层状硅铝酸盐),它的单个片层直径约1微米,厚度约1纳米。美国国内两家主要的生产商是Nanomer公司和南方粘土产品公司。这两家公司和树脂与改性剂供应商、复合材料生产商、汽车零部件生产商和包装公司联合进行研究开发,相关研究成果都申请了专利,不少研究成果在商业上取得了成功。

通用汽车公司已经率先将纳米复合材料用于汽车上。通用汽车公司宣布在2002款GMC旅行车和ChevroletAstro客货两用车车体外的脚踏板上使用了纳米复合材料。在2003和2004款车型上也使用了纳米复合材料部件。稍后,通用汽车公司在它的体积最大的车型,2004款的ChevroletImpala汽车的车体两侧使用了聚丙烯/粘土纳米复合材料。这种复合物是由密执根州Warren市的通用汽车公司研发中心与Basell北美公司、南方粘土产品公司联合开发的。

最新的应用是在20__款的GMHummerH2汽车上。这种车车箱底的中心大梁、方向盘和车尾的保险杠上用了大约7镑重模塑成型的彩色纳米复合材料部件。这种材料是Basell公司研发的热塑性聚烯烃/纳米粘土复合材料。

纳米粘土能提高塑料的力学强度,而碳纳米管则能赋予塑料以导电性和导热性。碳纳米管的商业潜力受到它的高价格的制约,其价格高达100美元/克,它的聚合物母料在市场上可以50美元/镑左右的价格购得。但从上世纪九十年代未以来,美国生产的几乎每一辆汽车中都使用了碳纳米管,典型的应用是将碳纳米管与尼龙混合以改进燃料系统的抗静电性能。含碳纳米管的防静电复合材料也能用于保护计算机的读写头。

碳纳米管包括单层和多层结构两种类型。前者的外径通常是1-2纳米,后者的外径通常是8-12纳米。他们的长度在10-100微米之间,至少有1000:1的长径比。碳纳米管的拉伸强度是不锈钢的50倍,导热性是铜的5倍。与炭黑、金属粉之类的传统填料相比,碳纳米管在增加塑料的导热性与导电性方面的能力强很多倍。

美国国内的碳纳米管供应商主要有HyperionCatalysis公司和后来的Zyvex公司。这两个供应商提供的碳纳米管聚合物母料通常含15-20的碳纳米管。

一种不同但有关联的产品是PyrografProduct公司提供的气相生长的碳纳米纤维。据称它的PyrografⅢ纳米纤维在改善导热性和导电性方面能与碳纳米管媲美,能大幅度地提高复合材料的机械性能和阻燃性(炭化)。更重要的是,碳纳米纤维的价格低得多,大约100-150美元/镑。碳纳米纤维可用于尼龙、聚丙烯和聚氨酯。

2.主要的纳米粘土复合物品种

Nanocor公司和另两家专业复合材料生产商联合开发的纳米复合材料和母料在结构材料和阻隔材料方面的应用达到了商业规模。

NoblePolymers公司新的Forte牌聚丙烯纳米复合材料已用于本田AcuraTL20__汽车。Forte取代了玻璃纤维增强聚丙烯,玻璃纤维增强聚丙烯成型困难、不透明、易于弯曲。Forte的密度只有0.928g/cc,机械性能优异,外观得到了改善,且可多次回收使用。

Noble公司报告说Forte纳米复合材料将被用于生产2006款轻型卡车的中央控制台。其它方面的应用包括办公家具(取代20%的玻璃纤维增强聚丙烯)和设备零部件,Forte能降低重量和成本。

PolyOne公司最近推出了Ma__amLST系列的聚丙烯均聚物/纳米粘土复合物,声称这种材料具有高硬度和高冲击强度。PolyOne公司还报告说通过其专利工艺,这种材料已克服了纳米粘土剥离和分散不完全的问题,它的性能达到甚至超越许多热塑性工程塑料。并称这种材料质轻、美观、易于成型、成本低。

PolyOne公司也提供纳米粘土含量达40%的纳米粘土母料(商品名为Nanoblend),Nanoblend的基体可以是均聚聚丙烯、改性聚丙烯、线型低密度聚乙烯、低密度聚乙烯、高密度聚乙烯和乙烯共聚物。一些品种专门被用于提高阻隔性能。PolyOne公司报告说最近的商业应用包括了货盘和日常用品,并详细说明了Ma__amLST可以做为工程塑料的替代品,因为它们具有良好的尺寸稳定性(这对于机器零部件是至关重要的)。而且,他们还称这种材料具有好的冲击强度和更轻的重量。Ma__amLST也可以考虑用于消费者可随意使用的用具,这是因为它具有很好的耐化学腐蚀性和硬度,其可循环使用的次数也得到了大幅度的提高。

Nanoblend也正在被考虑用于汽车内外的

热塑性聚烯烃部件。其主要优点是尺寸稳定、质轻、硬度高而冲击强度不降低。Nanoblend用于膜片,可提高其阻隔性、硬度和热变形温度,控制抗菌剂、染料等其它添加剂的迁移和挥发。用于吹塑料成型包装材料,可提高其阻隔性能,降低厚度,缩短成型周期。薄壁化和更快的成型速度对注塑成型也是有吸引力的[4,5]。3.增强效果更好的TPOs

由通用汽车公司和南方粘土产品公司发表的论文提及了汽车上的热塑性聚烯烃(TPOs)部件,其性能通过纳米粘土得到了大幅度的改进。这些改进来之不易:早先由于粘土凝聚导致的成型问题最终通过优化粘土在挤出机上的进料位置、螺杆设计、螺杆转速、成型温度和成型压力得到了解决。成型问题解决以后,TPOs纳米复合材料与传统的滑石粉填充TPOs相比,性能得到了全面的改善,性能更稳定、低温韧性更好、消除了水纹、减小了涂层的剥离和熔合痕、改进了着色能力、抗抓挠能力、抗磨损能力和再生能力。而且,更低的填料含量意味着更低的密度(密度降低3%-21%),更轻的重量粘合时需要的粘合剂更少,这有利于降低成本[6]。

在汽车上,纳米复合材料适用的部件包括仪器仪表板、摇杆套、装饰件、格栅、车盖气窗、仪器控制台、座位上的泡沫材料、车门的芯层结构材料、轴套、垂直和水平支柱、档板、引擎盖、风扇罩、进气口、燃料箱和输油管线。

除了TPO/粘土纳米复合材料外,通用汽车公司还尝试了用碳纳米管复合材料取代现在的热固性结构复合材料。通用汽车公司对用碳纳米管或短纳米纤维取代连续的碳纤维后填料含量可以降低感兴趣。碳纳米管有潜力增加塑料的导热性。

4.更好的阻隔材料

聚合物阻隔技术也通过纳米粘土得到了很大发展。三菱气体化学品公司(MGC)和Honeywell专业聚合物公司正在将Nanocor公司的纳米粘土用于尼龙以作为多层聚酯瓶和食品包装膜中的阻隔层。MGC的一种叫ImpermN的尼龙纳米复合材料在欧州已用于生产装啤酒和其它酒精类饮料的多层聚酯瓶。也正在被考虑用于生产装碳酸类软饮料的瓶子。接下来将被考虑用于生产多层热成型的装熟肉制品和干酪的包装容器,以及用于生产包装土豆片和番茄酱的软质薄膜。

Honeywell公司起初将它的Aegis牌尼龙6纳米复合材料定位于生产聚酯(PET)啤酒瓶。在2003年底,韩国的HiteBrewery公司生产了一种叫HitePitcher牌的啤酒瓶,在这种啤酒瓶中使用了含抗氧剂的Aegis,但在商业上并不成功。Aegis是三层结构中的阻隔层,据说可以提供26周的保质期。

Honeywell公司现在正将其它的不含抗氧剂的Aegis纳米复合材料代替乙烯-乙烯醇共聚物(EVOH)用于制作薄膜和包装袋。据报导,这些材料成本比EVOH低,质轻,阻隔性能更好,而且有更好的抗穿刺能力和更好的透明度(因为纳米颗粒的体积小,不会妨碍光线透过)。

美国军方和美国航空和宇宙航行局(NASA)联合马萨诸塞州Chelmsford市的TritonSystems公司正在寻求用纳米粘土提高EVOH的阻隔性能,以制备长效包装材料。它们在EVOH中加入3%的南方粘土产品公司的Cloisite纳米粘土并制成薄片,夹在两层PP片之间,通过热成型试验性地制成了食品包装盒。据报导,它不用冷藏就有3-5年的保质期,而且具有良好的透明度、成型加工性和可循环使用性能。

AlcoaCSICrawfordsville公司正在寻求一项有关共挤出阻隔材料的专利,这种材料用于生产啤酒、果汁和碳酸软饮料的塑料瓶盖。这种材料包括一层尼龙6/纳米粘土复合材料,再加上一到二层含抗氧剂的EVA。这种材料据说在高湿度(相对温度95%-96%)环境中胜过其它阻隔材料[7]。

韩国的LG化学品有限公司已经开发了一种高阻隔性的单层吹塑模塑容器,这种容器是用含3%-5%的纳米粘土的HDPE制成的,用于装甲苯和轻质的液态烃。LG报导说,与纯HDPE相比,烃溶剂在这种材料中的渗透性降低了40-200倍。

5.多用途的纳米碳

从上世纪九十年代初以来,象快速连接器、过滤器之类的汽车供油管路中的零部件中就使用了由尼龙12和纳米碳组成的内部阻隔层。HyperionCatalysis公司现在致力于将碳纳米管引入到用在汽车燃料系统中的改性尼龙和氟塑料之类的其它树脂中。一种新的氟塑料/碳纳米管复合材料正被用于制造汽车燃料管路连接器的O型圈。

在电子领域,计算机硬驱中的聚碳酸酯和聚醚酰亚胺(通用电气公司的Ultem)部件用碳纳米管进行了增强,加碳纳米管后其传导性更好,也更平滑。

在过去的三年以来,欧州一家主要的汽车零部件供应商一直在将碳纳米管用于通用电气公司的NorylGTX牌尼龙/聚苯醚合金中以制造外部的档泥板。这种导电性的纳米复合材料可以进行静电涂覆。

位于东兰辛市的密执根州立大学的复合物材料与结构中心研发了一种新的表面处理的石墨纳米片。石墨有粘土几倍的模量,有优异的导电与导热性。当加入环氧树脂后,与普通的的碳纤维和纳米尺度的炭黑相比,它导致了更好的机械性能和优异的导电性。密执根州立大学看到了它在回声探测保护和电磁干扰领域的潜在用途。塑料纳米石墨复合物预计售价为5美元/镑,比碳纳米管和气相生成的碳纤维要便宜得多。

碳纳米管除了具有传导性外,还具有其它性能。位于马里兰州Gaithersburg市的国立标准与技术研究所(NIST)的研究人员报告说在聚丙烯中加入碳纳米管不仅提高了材料的强度和性能,而且显著地改变了聚合物熔体的流动方式,事实上消除了出口膨胀。

6.纳米阻燃剂

NIST的研究人员大量的研究表明纳米粘土能有效地提高材料的阻燃性能。NIST发现在尼龙6中加2%和5%的纳米粘土后,其放热速度分别减小了32%和63%。

专业复合材料公司Foster公司最近阐述了更高含量(13.9)的纳米粘土能被加入到尼龙12弹性体中。由于能促进炭化,纳米粘土使得通常含量为50%的含卤化合物/三氧化二锑阻燃体系含量降低了一半,这显著地减小了阻燃剂对聚合物机械性能的影响。这家公司首先在2001年将尼龙12/纳米粘土复合物用于管材和薄膜。

德国的Sud-Chemie公司供应一种叫Nanofil的改性纳米粘土,Nanofil是一种阻燃剂。它最近研发了不含卤素的EVA/PE电线电缆复合材料,这种复合材料含3%-5%的新型NanofilSE3000、含52%-55%的氢氧化铝或65%的氢氧化镁。据说结果导致产品机械性能得到了改进、外观更光滑、挤出速度更快。

根据HyperionCatalysis公司的报告,两次最近的研究表明多层碳纳米管在不用卤素的情况下就可以用作阻燃剂。在EVA和顺丁烯二酸酐改性聚丙烯中,加2.4-4.8的碳纳米管后,其放热速度的降低就可以和含纳米粘土的相应复合材料媲美甚至更好。

7.纳米成核剂

纳米粘土的许多优点之一就是可以做为成核剂控制泡沫材料的泡孔结构,增强泡沫塑料包装材料的隔热性能。多伦多大学机械与工业工程系研究了化学发泡的LDPE/木材纤维复合材料的挤出成型。在复合材料中加入5%的纳米粘土减小了泡孔尺寸、增加了泡孔密度、促进了泡沫的扩散。在燃烧时,泡沫材料更易于炭化。在二氧化碳气体发泡的LDPE/纳米粘土上也得到了类似结果。

俄亥俄州立大学化工系的研究者发现少量的表面接枝了PMMA的纳米粘土能减小二氧化碳气体发泡的小孔聚苯乙烯泡沫塑料的泡孔尺寸,增加泡孔密度。俄亥俄州立大学的另一项研究成果表明在戊烷或水发泡的聚氨酯泡沫塑料中加入5%的纳米粘土可以得到更小的泡孔和更高的泡孔密度。

路易斯安娜州立大学机械工程系报导加入4%-5%纳米粘土能提高环氧树脂复合泡沫塑料的柔韧度和伸长率,这种材料是三层结构材料中的芯层材料。

参考文献:

[1]夏生,王琪.聚合物纳米材料研究进展Ⅱ:聚合物/无机纳米复合材料[J].化工研究与

应用,20__,14(2):127-132.[2]王旭,黄锐,濮阳楠.聚合物基纳米复合材料的研究进展[J].塑料,20__,29(4):25-30.

[3]S.S.Ray,K.Yamada,M.Okamoto,etal.Newpolylactide-layeredsilicatenanocomposites.2.Concurrentimprovementsofmaterialproperties,biodegradabilityandmeltrheology[J].Polymer,20__,44(3):857-866.

[4]余丽秀,洲,王秋霞等.蒙脱石/尼龙66纳米复合材料制备及性能表征[J].矿产保护与利用,20__,(5):14-17.

[5]ModestiM,LorenzettiA,BonD,etal.Effectofprocessingconditionsonmorphologyandmechanicalpropertiesofcompatibilizedpolypropylenenanocomposites[J].Polymer,20__,46(23):10237-10245.

[6]Perrin-SarazinF,Ton-ThatM-T,BureauMN,etal.Micro-andnano-structureinpolypropylene/claynanocomposites[J].Polymer,20__,46(25):11624-11634.

纳米复合材料范文第3篇

[关键词]碳纳米管;复合材料;结构;性能

自从 1991 年日本筑波 NEC 实验室的物理学家饭岛澄男(Sumio Iijima)[1]首次报道了碳纳米管以来,其独特的原子结构与性能引起了科学工作者的极大兴趣。按石墨层数的不同碳纳米管可以 分 为单壁碳 纳 米管(SWNTs) 和多壁碳 纳 米管(MWNTs)。碳纳米管具有极高的比表面积、力学性能(碳纳米管理论上的轴向弹性模量与抗张强度分别为 1~2 TPa 和 200Gpa)、卓越的热性能与电性能(碳纳米管在真空下的耐热温度可达 2800 ℃,导热率是金刚石的 2 倍,电子载流容量是铜导线的 1000 倍)[2-7]。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。

根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。

1 聚合物/碳纳米管复合材料的制备

聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。

1.1 溶液共混复合法

溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。Xu et al[8]和Lau et al.[9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。

1.2 熔融共混复合法

熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。Jin et al.[10]采用这种方法制备了 PMMA/ MWNT 复合材料,并研究其性能。结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。复合材料的储能模量显著提高。

1.3 原位复合法

将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。Jia et al.[11]采用原位聚合法制备了PMMA/SWNT 复合材料。结果表明碳纳米管与聚合物基体间存在强烈论文的黏结作用。这主要是因为 AIBN 在引发过程中打开碳纳米管的 π 键使之参与到 PMMA 的聚合反应中。采用经表面修饰的碳纳米管制备 PMMA/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。

2 聚合物/碳纳米管复合材料的研究现状

2.1 聚合物/碳纳米管结构复合材料

碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

提高聚合物机械性能的主要问题是它们在聚合物基体内必须有良好的分散和分布,并增加它们与聚合物链的相互作用。通过优化加工条件和碳纳米管的表面化学性质,少许的添加量已经能够使性能获得显著的提升。预计在定向结构(如薄膜和纤维)中的效率最高,足以让其轴向性能发挥到极致。在连续纤维中的添加量,单壁碳纳米管已经达到 60 %以上,而且测定出的韧度相当突出。另外,只添加了少量多壁或单壁纳米管的工程纤维,其强度呈现出了较大的提升。普通纤维的直径仅有几微米,因此只能用纳米尺度的添加剂来对其进行增强。孙艳妮等[12]将碳纳米管羧化处理后再与高密度聚乙烯(HDPE)复合,采用熔融共混法制备了碳纳米管/高密度聚乙烯复合材料,并对其力学性能进行了研究。结果表明:碳纳米管的加入,提高了复合材料的屈服强度和拉伸模量,但同时却降低了材料的断裂强度和断裂伸长率。Liu 等[13]采用熔融混合法制得了 MWNT/PA6(尼龙 6)复合材料,结果表明,CNTs 在 PA6基体中得到了非常均匀的分散,且 CNTs 和聚合物基体间有非常强的界面粘接作用,加入 2 wt%(质量分数)的 MWNTs 时,PA6 的弹性模量和屈服强度分别提高了 214 %和 162 %。总之,碳纳米管对复合材料的机械性能的影响,在很大程度上取决于其质量分数、分散状况以及碳纳米管与基质之间的相互作用。其他因素,比如碳纳米管在复合材料中的取向,纤维在片层中的取向,以及官能团对碳纳米管表面改性的不均匀性,也可能有助于改善复合材料的最终机械性能。

2.2 聚合物/碳纳米管功能复合材料

2.2.1 导电复合材料

聚合物/碳纳米管导电复合材料是静电喷涂、静电消除、磁盘制造及洁净空间等领域的理想材料。GE 公司[14]用碳纳米管制备导电复合材料,碳纳米管质量分数为 10 %的各种工程塑料如聚碳酸酯、聚酰胺和聚苯醚等的导电率均比用炭黑和金属纤维作填料时高,这种导电复合材料既有抗冲击的韧性,又方便操作,在汽车车体上得到广泛应用。LNP 公司成功制备了静电消散材料,即在 PEEK 和 PEI 中添加碳纳米管,用以生产晶片盒和磁盘驱动元件。它的离子污染比碳纤维材料要低65 %~90 %。日本三菱化学公司也成功地用直接分散法生产出了含少量碳纳米管的 PC 复合材料,其表面极光洁,物理性能优异,是理想的抗静电材料[15]。另外,聚合物/碳纳米管导电复合材料的电阻可以随外力的变化而实现通-断动作,可用于压力传感器以及触摸控制开关[16];利用该材料的电阻对各种化学气体的性质和浓度的敏感性,可制成各种气敏探测器,对各种气体及其混合物进行分类,或定量化检测和监控[17];利用该材料的正温度效应,即当温度升至结晶聚合物熔点附近时,电阻迅速增大几个数量级,而当温度降回室温后,电阻值又回复至初始值,可应用于电路中自动调节输出功率,实现温度自控开关[18]。

2.2.2 导热复合材料

许多研究工作证明,碳纳米管是迄今为止人们所知的最好的导热材料。科学工作者预测,单壁碳纳米管在室温下的导热系数可高达 6600 W/mK[19],而经分离后的多壁碳纳米管在室温下的导热系数是 3000~6600 W/mK。由此可以想象,碳纳米管可显著提高复合材料的导热系数及在高温下的热稳定性[20]。Wu 等[21]制 备 了 多 壁 碳 纳 米 管 / 高 密 度 聚 乙 烯(MWNTs/HDPE)复合材料,并对其热性能进行了深入的研究,实验结果表明:导热系数随着 MWNTs 含量的增加而升高。当MWNTs 的质量分数达到 38 h,混合材料的导热系数比纯HDPE 的高三倍多。徐化明等[22]采用原位聚合法制备的阵列碳纳米管/聚甲基丙烯酸甲酯纳米复合材料,在氮气和空气气氛下,复合材料的热分解温度比基体材料分别提高了约 100 和60 ℃。在导热性能上,阵列碳纳米管的加人使得复合材料的导热系数达到 3.0 W/mK,比纯 PMMA 提高了将近 13 倍。

2.2.3 其它功能复合材料

在碳纳米管/聚合物功能复合材料方面最近有南昌大学纳米技术工程研究中心[23]研制的一种多壁碳纳米管/环氧树脂吸波隐身复合材料。通过对多壁碳纳米管进行高温 NaOH 处理,使碳管在其表面产生较多的孔洞,提高碳纳米管的表面活性;制备的吸波隐身复合材料具有良好的雷达吸波效果和可控吸收频段,这种吸波复合材料的体积电阻率在 106~107 ·cm 数量级,具有优良的抗静电能力,这对于调整雷达吸波材料的吸波频段和拓宽吸波频宽有着重要意义。美国克莱姆森大学Rajoriat[24]用多壁碳纳米管对环氧树脂的阻尼性能进行了研究,发现碳纳米管树脂基复合材料比纯环氧树脂的阻尼比增加了大约 140 %。

3 制备碳纳米管聚合物复合材料中存在的问题

3.1 碳纳米管在基体中的分散问题

碳纳米管的长径比大,表面能高,容易发生团聚,使它在聚合物中难以均匀分散。如何让碳纳米管在聚合物基体中实现均匀分散是当前需要解决的首要难题。经表面改性的碳纳米管可均匀分散在聚合物基体中,可以利用化学试剂或高能量放电、紫外线照射等方法处理碳纳米管,引入某些特定的官能团。Liu J 等[25]首先采用体积比为 3∶1 的浓硫酸和浓硝酸对単壁碳纳米管进行氧化处理,得到了端部含羧基的碳纳米管,提高其在多种溶剂中的分散性。ChenQD[26]将碳纳米管用等离子射线处理后引入了多糖链。还可运用机械应力激活碳纳米管表面进行改性,通过粉碎、摩擦、超声等手段实现。

3.2 碳纳米管的取向问题

碳纳米管在聚合物中的取向应符合材料受力的要求,研究表明,通过一定的加工例如机械共混剪切可以改善碳纳米管在聚合物中的取向,从而进一步改善复合材料的性能。Jin L[27]将多壁碳纳米管溶解于一种热塑性聚合物溶液中,蒸发干燥制备出碳纳米管呈无序分散状态的薄膜,然后在其软化温度之上加热并用恒定负荷进行机械拉伸,使其在负荷下冷却至室温,发现通过机械拉伸复合物可以实现碳纳米管在复合物中的定向排列。

3.3 复合材料成型问题

当前碳纳米管/聚合物复合材料的成型一般采取模压、溶液浇铸等手段,模压操作简单、易于工业化,但在降温过程中,样品由于内外温差较大会发生表面开裂等问题;溶液浇铸形成的样品不受外界应力等因素的影响,但除去溶剂过程较长,碳纳米管易发生团聚。

此外,聚合物进行增强改性所用的填料由原来微米级的玻璃纤维、有机纤维等发展到如今的碳纳米管,填料尺寸上的变化使复合物材料原有的加工技术和表征手段都面临着新的挑战,需要在今后大力发展原子水平的新型加工技术和表征手段,以适应碳纳米管聚合物复合材料发展的需要。

4 结语

碳纳米管以其独特的性能正在越来越多领域得到应用,随着科学技术的进步当前碳纳米管复合材料制备过程中存在的各种问题会逐渐得到解决,总有一天纳米技术会真正走到人们的现实生活当来,给人们的生活带来翻天覆地的改变。

参考文献

[1]Iijima S.Heical microtubules of graphitic carbon[J].Nature,1991,354:56-58.

[2]Wong E W,Sheehan P E,Lieber C M.Nanobeam mechanics:elasticity,strength,and toughness of nanorods and nanotubes[J].Science,1997,277:1971-1975.

[3]Kim P,Shi L,Majumdar A,et al.Thermal transport measurements ofindividual multiwalled nanotubes[J].Physical Review Letters,2001,87:215-221.

[4]Cornwell C F,Wille L T.Elastic properties of single-walled carbonnanotubes in compression[J].Solid State Communications,1997,101:555-558.

[5]Robertson D H,Brenner D W,Mintmire J W.Energetics of nanoscalegraphitic tubules[J].Physical Review,1992,B45:12592-12595.

[6]Lu J P.Elastic properties of carbon nanotubes and nanoropes[J].PhysicalReview Letters,1997,79:1297-1300.

[7]Yakobson B I,Brabec C J,Bernholc J.Nanomechanics of carbon tubes:instabilities beyond linear response[J].Physical Review Letters,1996,76:2511-2514.

[8]Xu X J,Thwe M M,Shearwood C,Liao K.Mechanical properties andinterfacial characteristics of carbon-nanotube-reinforced epoxy thinfilms[J].Applied Physics Letters,2002,81:2833-2835.

[9]Lau K T,Shi S Q,Cheng H M.Micro-mechanical properties andmorphological observation on fracture surfaces of carbon nanotube compositespre-treated at different temperatures[J].Composites Science and Technology,2003,63:1161-1164.

纳米复合材料范文第4篇

1.1主要原料

PP(Z30S-2,熔体流动速率为23g/10min,等规度≥95%),抚顺乙烯化工公司;纳米MgO(平均粒径为50nm,纯度为99.9%),上海谱振生物科技公司。

1.2主要设备

双螺杆挤出机组(SHJ-20B型),南京海思挤出设备公司;注塑机(HTB-80型),宁波海天塑料机械公司;紫外可见光谱仪(LAMBDA35型),美国PE公司;冲击实验机(XJJ-5型),河北承德实验机公司;电子拉力实验机(RGD-5),深圳瑞格尔仪器公司;扫描电镜(SEM,SIRION200型),荷兰FEI公司;同步热分析仪(TGA-DSC1型),瑞士梅特勒-托利多公司。

1.3样品制备

将PP与纳米MgO按一定比例混合均匀,在双螺杆挤出机上熔融共混挤出造粒制得PP/纳米MgO复合材料。共混粒料干燥后,在注塑机上注射成标准测试用样条。

1.4测试与表征

DSC测试:先快速升温至200℃,恒温5min以消除热历史,再以10℃/min的降温速率冷却,扫描纪录DSC曲线;当温度降至50℃后再以10℃/min的速率升温,扫描纪录DSC曲线。使用的全结晶PP热焓为已报道的209J/g[8]。TG测试的升温速度为10℃/min。将样品热压成薄膜后测试其紫外-可见光谱,并通过扫描电镜(SEM)观测纳米MgO在PP膜中的分散情况。力学性能测试:拉伸试验按GB/T1040-90进行;弯曲试验按GB/T9341-88进行;冲击试验按GB1043-93进行。

2结果与讨论

2.1复合材料的结晶和熔融行为

通过DSC研究复合材料的结晶和熔融行为,图1为纯PP和PP/纳米MgO复合材料的降温结晶曲线和熔融曲线。从DSC图中可得到PP/纳米MgO的结晶温度(Tc)、熔融温度(Tm)和熔融热焓(ΔHm)等,列于表1。从图1中的降温结晶曲线可见,纳米MgO的加入使复合材料的结晶温度Tc有明显的提高。当纳米MgO的含量为1%时,复合材料的Tc比纯PP提高了2.5℃(见表1),这表明少量的纳米MgO即对PP基体有明显的异相成核作用。纳米MgO的含量提高至2%和3%,复合材料的Tc增长幅度分别为1.0℃和0.5℃,表明Tc的增长幅度变缓。从表1还可看出,加入纳米MgO可提高PP的结晶度。当纳米MgO的质量分数为2%时,复合材料的结晶度达到36.3%,比纯PP提高了2.1%,但当纳米MgO添加量继续增加,复合材料的结晶度变化不大。这表明纳米MgO对PP起异相成核的作用,有利于PP分子链的规整堆砌和结晶,减少结晶缺陷,从而使PP的结晶度增大。但当纳米MgO的含量达到一定值时,作为诱导结晶中心的粒子逐渐趋于饱和,纳米MgO作为成核剂的作用逐渐降低,复合材料的结晶度基本维持不变。过冷度(ΔT)为Tm与Tc的差值,反映了聚合物的结晶速率[9]。ΔT越小,即结晶温度越接近熔点,结晶速率越大。随着纳米MgO含量的增加,复合材料的ΔT值逐渐减小,表明其结晶速率得到了提高。

2.2复合材料的热稳定性能

利用复合材料的TG曲线研究其热稳定性能,结果见图2。由图2可知,在热分解的前期阶段(275~330℃),随纳米MgO含量的增加,复合材料的失重率增大,这是由于复合材料中吸附的少量水和气体小分子挥发所引起的[10],纳米MgO增强了复合材料的吸附性能。在热分解的后期阶段(330~400℃),随纳米MgO含量的增加,复合材料的失重率减小,这是因为复合材料中的纳米MgO并未发生热分解的缘故。由于纳米MgO的引入,使得复合材料的热稳定性与纯PP相比有所降低,且随纳米MgO含量增加,下降程度增大,这可能是由于纳米MgO表面吸附的小分子物质热分解以及金属镁原子对PP的催化氧化分解所致。

2.3复合材料的光学性能

通过紫外-可见光谱来表征复合材料的光学性能,见图3。由图3可知,在400~800nm的可见光区,复合材料膜的透光率在45%以上,复合材料呈现半透明状态,这是因为PP的结晶。可见光的透过率随纳米MgO含量的增加而有所降低,这一方面是由于纳米MgO颗粒在复合材料中对可见光产生了一定的反射、散射和吸收,另一方面与纳米MgO可能促进PP结晶有关。在200~400nm的近紫外光区,随着纳米MgO含量的增加,复合材料屏蔽紫外线的截止波长向可见光区逐渐红移,由230nm增加到了270nm,这表明纳米MgO的加入提高了复合材料的紫外屏蔽性能。

2.4复合材料的力学性能

表2为纯PP和不同纳米MgO含量的PP/纳米MgO复合材料力学性能。由表2可知,纳米MgO含量为1%时复合材料的冲击强度达到6.1KJ/m2,比纯PP提高32%,表明纳米MgO的加入能提高复合材料的韧性。纳米MgO含量继续提高,复合材料的冲击强度先基本维持不变后又有所降低,表明纳米MgO含量过多对改善复合材料的冲击强度的帮助不大。随纳米MgO含量的增加,复合材料的弯曲强度先增加后又有所降低,纳米MgO含量为2%时复合材料的弯曲强度最大,表明适量纳米MgO的加入使得复合材料具有较好的刚度。随纳米MgO含量的增加,复合材料的拉伸强度变化不明显。

2.5纳米MgO在PP中的分散情况

图4为纳米MgO含量为2%的PP/纳米MgO复合材料膜的SEM照片。通过对PP/纳米MgO复合材料SEM照片的观测可看到,纳米MgO粒子的粒径为纳米级,未显示明显的团聚现象,纳米MgO粒子在PP基体中的分散较为均匀。

3结论

采用熔融共混法制备了不同纳米MgO质量分数的PP/纳米MgO复合材料,纳米MgO颗粒在复合材料中分散均匀。纳米MgO的引入对PP的结晶有促进作用,并提高了PP的紫外屏蔽性能。纳米MgO的引入尽管使PP的热分解温度有所降低,但在力学性能方面提高了PP的刚性和韧性。

纳米复合材料范文第5篇

【关键词】食品包装 纳米复合材料 应用

1 纳米复合材料在食品包装中的优势

纳米复合材料多以聚合物为基底,是将柔性良好的高分子聚合物缴入纳米尺寸(1nm~100nm)分子中或纳米颗粒制备而成[1]。纳米复合材料主要有无机纳米材料和有机聚合物组成,这两种材料都能改善包装材料的特性,防止细菌滋生,从而有效保障食品的品质。

1.1柔性高

纳米复合材料由柔性良好的高分子聚合物组成,所以其制成的包装材料具有非常好的柔性,不易磨损,相对与传统食品包装材料使用寿命更长。且纳米复合材料的可塑性高,食品包装的设计者可以将纳米复合材料设计成需要的造型,以便突出整个食品的特点与设计理念。

1.2物理化学性能稳定

纳米粒子的直径小,比表面积大,具有良好的物理化学性能,在高温条件下也不会发生变形。纳米复合材料的阻断性能也好,能有效防止细菌滋生,祛除异味,延长食品的使用时间,保证了食品的质量。

1.3生产成本低且环保

随着纳米技术的发展与普及,纳米复合材料的制作成本也得到了很大的降低。如新型抗菌材料PA66中就是加入了一种纳米黏土复合材料,将纳米氧化锌运用到包装材料的生产中,使得该材料的成本得到大幅度的降低。且纳米复合材料具有良好的降解性,不会对环境造成任何危害[2]。纳米复合材料中纳米分子是微孔结构,具有高比表面积,能自主的选择过滤氧气与二氧化碳,为果蔬类食品形成了一个天然的气调包装,延长了果蔬类食品的保鲜时间。

2 纳米复合材料在食品包装中的应用

2.1在延长食品保鲜中的应用

果蔬类食品存放时会释放乙烯,当乙烯达到一定浓度后会加速果蔬类视屏的腐烂。传统的食品包装材料中并不能够很好的吸收乙烯,因此无法实现对果蔬类食品长时间保鲜的目的。但有研究发现纳米银可以催化乙烯,若在果蔬类食品包装材料中加入纳米银,就能减少乙烯的浓度,延长果蔬类食品的保鲜时间。

2.2在提升食品包装封闭性中的应用

食品包装的封闭性主要是用于阻断氧气、二氧化碳及水蒸气等,以延长食品的保存时间。聚合物纳米复合材料及蒙脱土纳米复合材料都具有良好的阻断性,能提升食品包装的封闭性,降低其渗透性。如岳青青研究发现,有机蒙脱土纳米复合材料相较与天然橡胶,其对对氧气的渗透量率降低了近50%,说明纳米复合材料具有良好的气体阻断性,能有效提升食品包装的封闭性[3]。

2.3在保证食品抗菌中的应用

纳米复合材料本身就具有良好的抗菌性能,能有效抑制微生物的滋长,从而保证食品不受细菌污染。有研究显示,在聚烯N薄膜中加入无菌纳米抗菌剂和增增效剂,其杀菌力能够达到98.13%,且阻断性与封闭性没有受到明显影响,但其柔性、坚韧性就会有所下降。

3 纳米复合材料在食品包装中的安全性

虽然相对于传统的食品包装材料,纳米复合材料具有良好的物理化学性能、抗菌性强、柔韧性高且材料环保,但其纳米材料是否会与其他分子产生生物学效应,已经成为人们关注的重点。有研究发现,纳米颗粒若产生大量的活性氧物质,那么在生物体内就会呈现出一定的毒性;若纳米复合材料中有纳米金属或金属氧化物,纳米金属纳米颗粒就与生物体内的蛋白结合,造成蛋白功能异常,直接或间接呈现出基因毒性[4]。通过对纳米复合材料的成分、温度和时间等研究发现,纳米金属或金属氧化物颗粒产生的毒性与其浸泡的温度与时间有关,但具体关系目前尚无定论,仍需进一步的研究[5]。而纳米金属或金属氧化颗粒进入到人体后归宿、是否会对机体组织造成影响、造成怎样的影响及相应的解决方案,都需要大量的研究与探讨。

结语

纳米复合材料因其良好的阻隔性、抑菌性与催化乙烯的等性能,能有效的延长食品的保鲜时间,抑制微生物的生长,保证了食品的安全与品质,延长了食品的保质期。且其造价成本低,对环境不造成任何危害,故而被广泛的运用与食品包装中。但因纳米复合材料中的纳米颗粒会与其他分子发生生物学效应,产生一定的毒性,故其安全性仍待商榷。

【参考文献】

[1]韩伟,于艳军,李宁涛,王利兵.纳米复合材料在食品包装中的应用及其安全评价[J].科学通报,2011,03:198-209.

[2]张宏康,G.S.Mittal.纳米复合食品包装材料研究进展[J].食品工业,2011,05:82-84.

[3]艾茜,胡长鹰,林勤保,王志伟,李河.纳米银/低密度聚乙烯复合食品包装薄膜的表征及性能[J].食品工业科技,2014,22:294-298.

作者简介:

纳米复合材料范文第6篇

当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能:

1、尺寸效应

当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。

2、表面效应

一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。

纳米微粒尺寸d(nm)包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与其它原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。

3、量子隧道效应

微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。

二、高聚物/纳米复合材料的技术进展

对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类:

1、高聚物/粘土纳米复合材料

由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。

2、高聚物/刚性纳米粒子复合材料

用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性方法。随着无机粒子微细化技术和粒子表面处理技术的发展,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。

3、高聚物/碳纳米管复合材料

碳纳米管于1991年由S.Iijima发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。

碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。

论文网为您提供免费的论文,毕业论文服务,希望[纳米复合材料技术发展及前景]能给您带来帮助,请记住本站永久唯一域名:在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。

三、前景与展望

纳米复合材料范文第7篇

关键词:机械合金化;铝基复合材料;纳米尺度

中图分类号:TB383.1 文献标识码:A 文章编号:1006-8937(2015)26-0072-02

1 概 述

铝基复合材料具有高比强度和比模量、低热膨胀系数、良好的尺寸稳定性、较高的高温机械性能以及抗疲劳、耐磨损等优良性能。与钢相比,铝基复合材料的密度仅为钢的三分之一,耐磨性则与铸铁相当;与铝合金相比,导热率与其基本相当,抗拉和抗压强度及弹性模量大幅提高,热膨胀系数有较大幅度的降低。

因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一,在航空航天、汽车、电子和光学仪器、体育用品等领域得到了广泛了应用。

基于进一步提高铝基复合材料机械性能的需求,研究发现,减小增强体颗粒尺寸会增加铝基复合材料的塑性、韧性和强度,因而越来越多小尺寸(约1 μm或更小)的增强体被用来制备铝基复合材料。纳米复合材料被定义为在多相固体材料中,其中一个相(一般为增强体)至少有一个方向其尺寸小于100 nm。在纳米铝基复合材料的制备中,纳米颗粒的特性给使用液相法的制备工艺带了困难,因而固相法更多的被采用,其中最常见的为机械合金化法。

机械合金化(MA)是一种固态粉加工技术,涉及了粉末在高能球磨机中的冷焊、破碎和再冷焊的过程。

在此过程中,一定量的混合粉末装入容器中并放入研磨介质,然后在预定的时间长度内进行高速搅拌。当粉末中含有塑韧性良好的金属材料时,在球磨过程中需要加工过程控制剂(PCA)来避免其因过度冷焊而结块。在球磨结束后,可得到合金化且混合均匀的粉末。

本文以Al2O3、Al3Ti和CNTs为代表增强体,概述了机械合金化制备相应纳米铝基复合材料的研究进展。

2 AlCAl2O3 纳米复合材料

纳米复合材料具有两种不同的制备方法。在第一种方法中,氧化铝增强体通过原位化学反应生成,被称为原位复合材料。在第二种方法中,Al2O3颗粒直接加入铝中,再将混合物一起球磨,以产生纳米复合材料。

一般情况下,原位生成复合材料的界面结合更强,机械性能比非原位生成复合材料要好,但在纳米尺度下性能差异几乎不存在。

2.1 原位法

在原位制备Al-Al2O3 纳米复合材料过程中,最常用的原位反应方程式有:

2Al+3CuO 3Cu+Al2O3

2Al+3ZnO 3Zn+Al2O3

Xi等人研究了Al含量从20%~85%(wt.)范围内,Al和氧化铜的反应球磨。研究表明,当Al含量仅为20%(wt.),发生完全还原反应,反应产物为铜和均匀分散的氧化铝颗粒分散。但是,随着Al含量的增加,会形成铝-铜金属间化合物,如Cu9Al4,CuAl2和Al(铜)固溶体。

同时,细小而分散的氧化铝颗粒进入到了Al基体内。Wu等人研究结果表明球磨铝和10 Wt.%的氧化铜17 h后,Al4Cu9相衍射峰开始出现在X射线衍射图上,并且此析出物经过退火后转化为CuAl2相。

增强相的体积分数过大会造成混合粉末的压制困难。当氧化铜含量降低至5Wt.%,增强体包括析出的大小为100~500 nmCuAl2和10~50 nm的氧化物和碳化物颗粒,Al基体的尺寸大约74 nm。依照晶粒尺寸(Hall-Petch)和Orowan强化机制分析了复合材料的强度,表明Hall-Petch强化来源于细晶铝、Orowan强化源于纳米尺度的氧化物和碳化物颗粒。

Durai等人通过球磨铝,氧化铜和ZnO的混合物,球磨后的粉末经过冷压以及高温烧结,制备了Al-Al2O3纳米复合材料。

研究表明,该复合材料中细小的氧化铝颗粒弥散分布在Al(Zn)或Al(Zn)-4Cu的基体中。该材料在经过测试后发现耐磨损性得到改良,相比于未经过球磨直接进行冷压和烧结的复合材料具有更高的硬度和耐磨性。

2.2 非原位法

Prabhu等人球磨了铝-氧化铝混合粉末,选用不同尺寸(50 nm、150 nm和5 μm)和体积分数(5、10、20、30和50)的Al2O3。混合粉末在行星式球磨机中经过不同时间的球磨,结果表明,当球磨时间超过20 h以后氧化铝增强体能均匀分散到铝基体中。Al-20Vol.%50Al2O3在不同球磨时间后的SEM照片,如图1(a)(b)(c)(d)所示。

不同体积分数的Al-50Al2O3在球磨20 h后的X射线能谱元素分布图,如图2所示。通过照片可观察到球磨20 h后,氧化铝增强体实现了均匀分布。

3 AlCAl3Ti 纳米复合材料

相比于其他大多数富铝金属间化合物,Al3Ti因为它具有熔点高(约1623 K)、相对低的密度(3.4 g/cm3)和较高弹性模量(216 GPA)。另外,由于Ti在铝中的低扩散性和溶解度,Al3Ti在高温下会展现出低的粗化速率。因此,Al3Ti存在于Al基体中下可以非常有效地提高铝基复合材料的刚度,室温机械性能和改善的铝基复合材料热稳定性。

Lerf和莫里斯用机械合金化法以铝粉和钛粉为原材料合成了Al-Al3Ti复合材料。球磨后能观察到两金属元素均匀分布,再对混合粉末在873 K进行退火后,有Al3Ti金属间化合物产生。0.1~0.5 μmAl3Ti颗粒分布于Al基体上,同时因为在球磨过程中加入PCA,纳米尺度(50 nm)Al4C3和γ-Al2O3的球状颗粒也存在于铝基体中。Wang和Kao用机械合金化法和高温烧结合成了Al-Al3Ti复合材料,复合材料微观结构表现为平均尺寸约100 nm的等轴颗粒状Al3Ti弥散分布在铝基体中,同时在晶粒内和晶界上还存在着纳米尺度的Al2O3 和 Al4C3颗粒。而且还对Al3Ti含量不同的Al-Al3Ti复合材料的高温变形行为进行了研究。

4 AlCCNTs 纳米复合材料

碳纳米管因其优异的机械性能使其成为理想的复合材料增强体,在增强材料的刚度和强度同时并实现轻量化。然而碳纳米管固有的物理性质,使其有强烈的团聚倾向,最终造成材料性能不升反降的现象。机械合金化法能较好地解决碳纳米管团聚现象,从而最大程度的发挥其作用。

Morsi和Esawi通过机械合金化法制备了Al-MWCNTs(2~5 wt.%)纳米复合材料,并对碳纳米管的分布和铝晶粒尺寸进行了研究,结果表明,球磨能够避免碳纳米管在复合材料中的团聚;在球磨48 h的样品中能观察单个的碳纳米管到嵌入在铝基体中;球磨过程中冷焊和破碎的共同作用,细化了铝基体的晶粒。

George等人用球磨合成的Al-CNT(单壁和多壁)复合材料,为了保持CNT的完整性,球磨时间较短,复合粉末再经过冷压、烧结和热挤压。通过测试材料的屈服强度、拉伸强度和弹性模量,结果表明,复合材料具有比基体合金更好的机械性能。性能的提升归结于热失配、剪滞和Orawan机制共同作用的结果。

5 展 望

纳米相增强铝基复合材料是近年迅速发展起来的一种新型材料,表现出优异的理化和力学性能,机械合金化法在制备纳米铝基复合材料过程中表现出独特的优势,但距离工程化应用仍然存在成本高、制造效率低、可靠性与稳定性有待提高等新材料实用化过程中面临的共性问题,需要进一步攻关并逐一克服。

参考文献:

[1] 王宇鑫,张瑜.铝基复合材料的研究[J].上海有色金属,2010,(31).

[2] Tjong SC.Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties[J].Adv Eng Mater,2007,(9).

[3] Lerf R,Morris DG.Mechanical alloying of Al-Ti alloys[J].Mater Sci Eng A,1990,(A128).

[4] Wang SH,Kao PE.The strengthening effect of Al3Ti in high temperature deformation of Al-Al3Ti composites[J].Acta Mater,1998,(46).

[5] Morsi K, Esawi A. Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)-CNT composite powders[J].J Mater Sci,2007,(42).

纳米复合材料范文第8篇

关键词:聚噻吩;纳米粒子;复合材料

高分子材料目前已成为人们日常生活中必不可少的一部分,起初人们认为高分子材料是不导电的具有绝缘性的材料;但是在20世纪70年代,来自日本和美国的科学家研究发现了其在一定条件下具有导电性[1–2],由此开发了导电聚合物这样一个全新的研究领域,在科学界引发了关注。常见的导电高分子有聚乙炔、聚吡咯、聚噻吩、聚苯胺和聚苯乙炔等[3]。其中,聚噻吩(PTh)具有导电性、环境稳定性[4]等特性,而且聚噻吩的α、β位上可以连接各种基团,从而其性质具备多样性[5]。因此,聚噻吩是一种极其重要的结构型导电高分子材料,被广泛应用于金属防腐涂层、光电器件、有机太阳能电池[6]、化学传感等诸多领域,具有良好的发展前景。本征态的聚噻吩分子链中存在共轭结构[7–8],使其具有一定的导电性。但纯聚噻吩的导电性不高,为改善聚噻吩的原有性能,进一步提高其导电率,研究人员制备出一系列的聚噻吩/纳米粒子复合材料,如聚噻吩/无机物纳米复合材料、聚噻吩/有机物纳米复合材料等。纳米级无机粒子材料是当前应用前景较为广泛的高功能无机材料,由于其颗粒尺寸的细微化,比表面积急剧增加,表面分子排布、电子结构和晶体结构都发生变化,具有表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等特点。聚噻吩纳米复合材料不仅改善了聚噻吩原有的优异性能,还综合了纳米粒子的纳米效应,使复合材料的总体性能优于聚噻吩的单一性能[9]。

1聚噻吩

1.1聚噻吩的合成方法

聚噻吩的合成方法有化学氧化聚合法、电化学聚合法、金属催化偶联法、光电化学聚合法、固相聚合法、原位化学聚合法等。使用的合成方法不同,或者聚合反应条件不同,所制得的聚噻吩宏观形状和微观形貌会随之有所不同,其物理性质及化学性质会产生一定差异。影响聚噻吩性质的主要因素有掺杂剂种类及用量、氧化剂种类及用量、介质的选择、反应体系的理化性质(包括反应时间、反应温度、电流密度、pH值、电压)等。制备聚噻吩最常用的方法为化学氧化聚合法和电化学聚合法[6]。1.1.1化学氧化聚合法化学氧化聚合法分直接法和间接法2种方法。直接法是在一定的反应介质中加入适量浓度的氧化剂,使噻吩单体在反应中直接通过加成聚合或缩合聚合生成聚合物并且同时完成掺杂过程的一种聚合方法。常用的氧化剂为无水氯化铁。此法的特点是加工工艺较简便,但产物溶解性较差,不易生成高相对分子质量产物,不易加工成型。间接法是将噻吩单体首先合成共轭聚合物前体,然后进行消除、加成或异构化等反应,最后生成聚噻吩。这种方法的缺点是产物的电导率不高[10]。噻吩是五元杂芳环结构,氧化电势高,所以制备聚噻吩条件要比制备聚吡咯苛刻。影响聚噻吩性能的因素有单体浓度、反应温度、反应时间、氧化剂种类及浓度等。韩永刚等[11]分析了单一影响因素对聚噻吩形貌及性能的影响,通过对样品进行扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)等一系列分析测试。研究发现,不同反应温度对聚噻吩的形貌有较大影响,40℃左右聚噻吩呈树枝状网络形貌,高于或低于40℃时聚噻吩则会聚合成层状。同时噻吩单体浓度对制得样品的颜色及聚噻吩合成的效率也有不同程度的影响。王红敏等[12]研究了不同的聚噻吩合成条件如温度、时间、浓度等对实验样品结构和导电性能的影响。结果表明,不同的制备条件对噻吩环的连接方式有不同程度影响,这直接导致聚噻吩的结构分布产生差异。通过对聚噻吩进行导电性能测试,发现聚噻吩导电性能的优劣与其自身结构有很大关系,其中当聚噻吩以α–α相连接时有更高的电导率。1.1.2电化学氧化聚合法通过控制电化学氧化聚合条件(包括噻吩单体的电解液、支持电解质和溶剂、聚合电位、电流和反应温度等),使聚合物在电极上沉积制备导电聚噻吩薄膜的方法叫做电化学氧化聚合法。这种方法的优点是产物的机械性能较好、导电率高,并且反应条件比较容易控制、实验易操作;同时这种方法也存在缺点,如制备的薄膜硬而脆,样品制作成本高、产量较低[13],且受到电极以及各种因素的影响,很难选择最优条件。马欢等人[14]利用电化学法在三氟化硼乙醚溶液中以不锈钢片为基底合成了聚噻吩薄膜,并对其进行了SEM、FTIR、TGA(热重分析)等一系列测试和抗腐蚀性能检测。结果表明,聚噻吩薄膜形貌均匀,具有良好的热稳定性和抗腐蚀性能。

1.2聚噻吩的应用

聚噻吩具有良好的化学和电化学稳定性[15]、掺杂水平高、有可逆的掺杂和去掺杂过程、结构多样性等优异性能,应用领域相当广泛,如电极材料、电致变色元件、超级电容器、太阳能电池、光电转换器件材料、电磁屏蔽材料、人造肌肉组织等[10]。

2聚噻吩复合材料

聚噻吩是功能导电高分子,未经掺杂的纯聚噻吩电导率相对较低,为改善纯聚噻吩的导电性能,通常选择合适的掺杂剂对其掺杂,使分子链中存在可自由移动的电子。由于纳米粒子与聚噻吩的协同效应,使制备出的复合材料综合性能得到大幅度提高和改善。纳米复合材料在光学、电子学[16]等领域具有很大的商业价值和发展前景,近年来得到关注并成为研究的热点。已经有很多学者制备了聚噻吩纳米粒子复合材料,使用过的纳米材料有CdSe、MMT(蒙脱土)、TiO2[17–19]等。

2.1聚噻吩复合材料合成方法

根据所需聚噻吩纳米粒子复合材料性能的不同,制备方法主要有原位化学氧化聚合法和固相法。2.1.1原位化学氧化聚合法一般情况下,纳米级聚噻吩与纳米级粒子复合时采用原位化学氧化聚合法。将制备好的纳米颗粒和噻吩单体分散溶解在特定溶剂中混合均匀,然后在一定的条件下引发单体进行化学氧化聚合,得到的产物即为纳米复合材料,这种方法叫做原位化学氧化聚合法。陈晗等人[20]用三氯化铁作氧化剂,利用原位化学氧化聚合法成功制备了LiFePO4/聚噻吩复合材料,同时对其进行了表征及测试。结果表明,当聚噻吩质量分数为9.6%时,其能在LiFePO4表面形成均一稳定的包覆层,此时的样品具有较高的电化学性能,循环性能及倍率性能也有明显改善。杨光等人[21]为达到改善和提高纳米二氧化锰充放电性能的目的,利用原位化学氧化法制备了聚噻吩/纳米二氧化锰(PTh/MnO2)复合材料,以聚噻吩掺杂量作为变量制备出一系列复合材料,并对其进行性能测试。结果表明:当w(聚噻吩)为8%~10%时,二氧化锰在复合材料中分布最均匀;当w(聚噻吩)为20%时,电池平衡容量最高,可达700mA•h/g。2.1.2固相法固相法是一种制备复合物粉末的传统工艺,利用该法制备出来的粉体颗粒具有无团聚、填充性好等优点,并且该法制作成本低、工艺简单;但该法制备能耗大、效率低,且产物颗粒不够细腻、易混入杂质。因此,关于利用固相法制备聚噻吩纳米粒子复合材料的研究报道还不是很多[22]。

2.2聚噻吩复合材料的测试方法

为进一步研究与确定聚噻吩纳米粒子复合材料的特征与性能,需对实验样品进行综合测试。主要测试方法有SEM、FTIR、X射线衍射(XRD)等。2.2.1SEM测试实验样品制备完成后,需要利用SEM分析其形貌结构。SEM可直接利用样品表面材料的物质性能进行微观成像,所获得的图像中二次电子像应用最广泛、分辨本领最高。SEM的试样制备方法很简单,对于导电性材料,在尺寸不超过仪器规定的情况下用导电胶将其粘贴在铜或铝制的样品座上,即可利用SEM直接观察;对于导电性差的材料或绝缘性材料,一般粘贴在样品座上之后要进行喷镀导电层处理。对于粉末状的聚噻吩纳米粒子复合材料样品,需先将导电胶或双面胶纸粘贴在样品座上,再均匀地把粉末样品撒在上面,用洗耳球吹去未粘住的粉末,再镀上一层导电膜,即可上电镜观察。阎福丰等[23]利用原位水热氧化还原法制备了二氧化锰/石墨烯/聚噻吩(MnO2/G/PTh)三元复合材料,对其进行了SEM测试。结果表明,复合材料中石墨烯表面有球状MnO2生长,大颗粒聚噻吩的缝隙中也存在球状MnO2。刘娟等人[24]制备了不同聚噻吩含量的聚噻吩/三氧化钨(PTh/WO3)纳米复合材料,利用SEM对其进行表征。SEM图像显示,纯聚噻吩纳米粒子分散性较好,形状不规则,PTh/WO3复合材料分散性也较好,但粒子直径、粒子与粒子之间的空隙与纯聚噻吩相比都发生了细微变化。2.2.2FTIR测试FTIR已成为化学实验室中必不可少的分析方法,它最突出的优点是固态、液态、气态样品均可测定,测定过程不破坏样品,分析速度快,样品用量少,操作简便。FTIR测试可提供所测样品官能团的结构信息。陈杰等人[25]在聚噻吩/二氧化钛(PTh/TiO2)复合材料的水溶液合成及其对铅吸附性能的研究中,对所制备的PTh/TiO2复合材料样品进行了FTIR表征,经过一系列数值分析,证实了官能团C==C、C—H、C—S的存在,即成功合成了聚噻吩;同时检测到Ti—O—Ti振动峰,表明了样品中有TiO2存在,说明聚噻吩和二氧化钛成功复合。高峰阁等[26]研究了聚噻吩/活性炭(PTh/AC)复合材料作为超级电容器电极材料的电性能,利用FTIR表征了复合材料的化学结构。测试结果表明,当n(活性炭):n(噻吩):n(三氯化铁)=10:1:4时,该配比下的噻吩聚合过程中共轭程度最大,此时的复合材料结晶性能和导电性能较好。2.2.3XRD测试XRD测试的主要作用是探索物质微观结构及结构缺陷等问题,通过衍射现象来分析晶体内部结构。敏世雄等[27]以无水FeCl3为氧化剂,在CHCl3中制备了聚噻吩敏化TiO2复合材料,利用XRD对其进行表征。测试结果表明TiO2的存在影响了聚噻吩的结晶,这有可能是由于聚噻吩与TiO2相互作用力的存在限制了聚噻吩分子链的运动和生长。

3聚噻吩复合材料的应用

目前,聚噻吩纳米复合材料在金属防腐、超级电容器、传感器、太阳能电池电极、气敏和光敏元件领域具有潜在应用。殷华茹等[28]以氯仿为溶剂、噻吩为单体、FeCl3为引发剂,利用单体氧化法制得了导电性较好的γ–Fe2O3/聚噻吩(PTP)纳米复合材料,γ–Fe2O3是磁性无机粒子,聚噻吩与γ–Fe2O3之间相互作用,优化了聚噻吩的性能,使复合材料在微波吸收、电磁屏蔽等领域有广泛应用。孙成龙等[29]对聚噻吩/氧化石墨烯复合材料进行了性能研究,制备了聚(3–己基噻吩)接枝氧化石墨烯(P3HT–g–GO)复合材料。由于氧化石墨烯具有良好的光学透明性、优异的热电导率,所以P3HT–g–GO复合材料在光电领域得到广泛研究与应用。

4结束语

近年来,虽然对聚噻吩及其纳米粒子复合材料已有较为深入的研究,但仍存在一些问题:制备复合材料的方法基本都采用原位化学氧化聚合法,制备方法单一,缺乏创新;另外,对于复合材料导电机理的研究仍不成熟,理论与实际应用还有很大差距。随着科学技术的发展,相信在未来的研究中,这些问题都会被一一解决,聚噻吩及其纳米粒子复合材料将在实际生产中得以广泛应用。

纳米复合材料范文第9篇

关键词:碳纳米管;聚氯乙烯;复合材料

中图分类号:TB332 文献标识码:A 文章编号:1000-8136(2012)03-0020-02

1 前言

1991年日本电镜专家NEC公司的Iijima在用石墨电弧放电法制备C60的过程中,发现了一种多层状的碳结构――碳纳米管(CNTs)。[1]CNTs独特的结构和性能使它具有良好的应用前景,尤其是其大规模生产的实现使其成为聚合物填充材料的首选,为未来复合材料的发展和广泛应用开辟了更为广阔的空间。

聚氯乙烯(PVC)作为一种通用型合成树脂材料,由于具有优异的耐磨性、抗化学腐蚀性、综合机械性及容易加工等特点,目前在工业及日常生活中均得以广泛应用。近年来,CNTs才逐渐用于改性PVC。

2 碳纳米管/聚氯乙烯复合材料的制备

2.1 溶液成膜法

溶液成膜法是目前制备CNTs/PVC复合材料的常用方法,其过程是将PVC溶于溶剂形成溶液,然后在机械搅拌或超声波作用下将CNTs分散在PVC溶液中,浇铸成膜挥发溶剂便得到复合材料。

Broza Georg等[2]采用溶液成膜法,通过四氢呋喃溶液分别制备出将单壁CNTs/PVC和多壁CNTs/PVC纳米复合材料,并将其进行了电性能测试,均一分散的CNTs改善了PVC的电学性能,但是CNTs的质量分数高达20%,这可能是因为CNTs未经过修饰,与PVC基体的结合力差所致。陈利等[3]通过溶液成膜法简单制得CNTs/PVC复合材料,CNTs含量介于1%~2.5%的PVC复合材料的导电性和拉伸强度都较纯PVC有较大改善。R. Jung等[4]将CNTs酸化处理后,用十六烷基溴化三甲基铵将酸化CNTs在超声波作用下分散在水中,再将预处理带负电荷的PVC微球过量加入到CNTs的水分散溶液中。CNTs靠静电作用吸附在PVC表面,真空干燥后将PVC粒子溶于N,N2二甲基甲酰胺(DMF)中浇铸成膜,薄膜的导电率在CNTs质量分数为29%时明显增加,拉伸强度等力学性能也有提高。JH Shi等[5]在CNTs表面接枝了聚甲基丙烯酸正丁酯(PBMA),将改性后的CNTs混于PVC的四氢呋喃溶液中浇铸成膜。PBMA的引入大大改善了CNTs在PVC中的分散性,使PVC的拉伸弹性模量和断裂伸长率都得到大幅度的提高。

上述研究表明,经过改性的CNTs在较低含量时就能显著改善PVC的力学性能。

2.2 熔融混合法

尽管溶液成膜法是制备碳纳米管/聚氯乙烯复合材料的常用方法,但此法不适合进行大规模工业生产,因此,研究人员又采用了熔融混合法。

Wang GJ等[6]先通过(苯乙烯/马来酸酐)共聚物(SMAH)改性CNTs,再将质量分数为0.25%的经修饰的CNTs与PVC熔融共混,使PVC材料的力学性能得到显著提高。此外,还用酸化、酰氯化、接枝等一系列反应成功地在MWNTs表面接枝聚己内酯(PCL),采用熔融混合法制备了PVC/改性MWNTs纳米复合材料,[7]在M1-g-PCL质量分数仅为0.7%时,复合材料的表面电阻率降低了3个数量级。

王平华等[8]采用RAFT活性聚合方法在CNTs表面接枝上聚合物链,然后与PVC通过熔融共混方法复合制备了CNTs/PVC纳米复合材料,对复合材料的结构与拉伸强度进行了表征研究,结果表明,接枝聚合物链的碳纳米管显著提高了PVC的拉伸强度。

王文一等[9]选用聚团状多壁碳纳米管(MWNTs)及氯化聚乙烯(CPE)、乙烯醋酸乙烯共聚物(EVA)等改性剂对聚氯乙烯(PVC)通过熔融混合法进行了抗静电及增韧研究,结果表明,MWNTs/CPE/PVC体系具有较高的抗静电效果,碳纳米管在复合材料中的含量为8.3%时分散均匀且形成了很好的网络结构,这在提高复合体系的热稳定性的同时赋予复合体系良好的导电性。

Faruk Omar等[10]采用熔融混合法制备了多壁CNTs/PVC复合材料,并将最优条件所得复合材料进行了弯曲性能、电性能及热性能测试。

目前,碳纳米管/聚氯乙烯复合材料的制备主要采用以上两种方法。

3 展望

从上文分析可知,碳纳米管作为填料能有效地改进聚氯乙烯的电学性能和力学性能,提高其导电性可以解决聚合物材料介电常数大、易带静电等问题。同时在尽量低的电渗流阈值下,使复合材料的力学性能和电学性能得到最优结合。

目前这方面的研究还处于初级阶段,主要集中在碳纳米管的分散、材料的制备等方面,主要还存在以下问题:①制备方法虽然简单,但要制备均一性能的复合材料,工艺仍需进一步改进。②复合材料中碳纳米管和聚氯乙烯之间的作用机理研究还不成熟,需要投入大量工作。③对复合材料的研究仍局限于碳纳米管或聚氯乙烯性能的改善及其应用,复合材料能否出现新的性能尚需进一步研究。

参考文献:

[1]Iijima S. Helical microtubules of graphite carbon[J]. Nature, 1991(7):56~58.

[2]Broza G, Piszczek K, Schulte K,et al. Nanocomposites of poly

(vinyl chloride)with carbon nanotubes(CNT)[J]. Composites Science and Technology, 2007(5):890~894.

[3]陈利.多壁碳纳米管/聚氯乙烯复合材料的制备及性能[J].高分子材料科学与工程,2009(4):140~143.

[4]Jung R, Kim H S,Jin H J. Multiwalled carbon nanotube reinforced poly(vinyl chloride)[J]. Macromolecular Symposia, 2007(1):259~264.

[5]Shi JH, Yang BX, Pramoda KP, et al. Nanotechnology, 2007, 18: 1~8.

[6]Wang GJ, Qu ZH, Liu L, et al. Material Science and Engineering A, 2007, 472: 136~139.

[7]王国建,赵明君.聚己内酯接枝改性MWNTs对PVC抗静电性能的影响[J].工程塑料应用,2010(1):10~14.

[8]王平华,王贺宜,唐龙祥等.碳纳米管/PVC复合材料的制备及表征[J].高分子材料科学与工程,2008(1):36~38.

[9]王文一,罗国华,魏飞. MWNTs/PVC复合材料的性能与结构[J].高分子材料科学与工程,2010(8).

[10]Faruk Omar, Matuana Laurent M. Journal of Vinyl & Additive Technology, 2008, 14:60~64.

Advances in the Study of Carbon Nanotubes/Poly(vinylchlorid)Composites

Wen Hairong, Cao Liunan, Zhang Hongmei, Yang Yuncui, Wu Liuwang

Abstract: A review on the fabrication of carbon nanotubes/Poly(vinylchlorid)composites is given in this paper, and the application prospect of the composites is envisaged.

纳米复合材料范文第10篇

[关键词]丹参;纳米银;磺胺嘧啶银;无菌;热原;刺激作用;全身急性毒性

[中图分类号]R644 [文献标识码]A [文章编号]1008-6455(2007)05-0596-04

在金属纳米材料中,银以其独特的抗菌性能而在医学界得到广泛应用,特别是在大量抗生素耐药的今天。而纳米银使银的杀菌能力产生了质的飞跃。因此,在烧伤整形领域出现越来越多的含纳米银的新敷料。一种新的医用生物材料应用于临床前需对其进行安全性评价。因此,本研究对自制的丹参纳米银复合材料进行了无菌试验、热原试验、原发性皮肤刺激试验、皮内刺激试验、急性全身毒性试验及测定全血及组织中的痕量银以评价该材料的生物安全性,为其作为创面修复和种子细胞的支架材料提供理论依据。

1 实验部分

1.1 仪器与试剂:HS-1300超净工作台(苏州安泰空气技术有限公司);101AB-Z电热恒温热鼓风干燥箱(上海华联环境试验设备公司恒昌仪器厂);XW-80A旋涡混合器(上海医科大学仪器厂);银元素空心阴极灯;360MC型原子吸收分光光度计(上海第三分析仪器厂)。

丹参注射液(江苏安格药业有限公司,生产批号:061205D);粉状壳聚糖(浙江玉环化工厂,脱乙酰度90%以上);冰醋酸(99.5%),硝酸银,氢氧化钠,柠檬酸三钠等均为分析纯;8%硫化钠溶液,3%戊巴比妥钠。

1.2 实验动物:1.9~2.8kg家兔,17~23g健康小白鼠,0.2kg左右SD大鼠,由南通大学实验动物中心提供。

1.3 实验方法

1.3.1 丹参纳米银复合材料的制备

1.3.1.1 纳米银的制备:根据Meisel报道的方法制备纳米银。

1.3.1.2 壳聚糖膜的制备:用1%冰醋酸溶液溶解壳聚糖得到1.5%的壳聚糖溶液。过滤后倒入塑料培养皿中烘干成膜。

1.3.1.3 丹参纳米银复合材料的制备:通过自组装技术得到丹参纳米银复合材料。

1.3.2 无菌试验:根据中华人民共和国药典(二部,2005)附录XIH进行无菌试验。

1.3.3热原试验

1.3.3.1 浸提液的制备:将丹参纳米银复合材料切成30mm×5mm条状,置于去热原的25ml锥形瓶中,按受试材料3cm2:1ml氯化钠注射液的比例,取一定量的氯化钠注射液于锥形瓶中,置于37℃电热恒温培养箱中浸提72h。72h后将浸提液转移至另一去热原的锥形瓶中,调节pH值为7.0左右,4℃保存备用。以上过程均在洁净工作台上按无菌操作要求进行。

1.3.3.2 热原检查法:根据GB/T16175-1996热原试验,在试验前7天选3只家兔,雌雄不限,雌兔无孕,且测温前7天内应在同一环境条件用同一饲料饲养,在此期间家兔体重无减轻,精神、食欲、排泄等无异常。预测体温时用肛温计插入家兔,深度约6cm,时间为2min,取出肛温计并记下读数。每隔lh测量1次,共测4次,体温均在38.O~39.6℃的范围内,且最高最低体温的差数不超过0.4℃,符合热原试验要求。

3天后将家兔固定于固定器内。30min后开始第1次测量,以后每隔30min测1次,共测2次。体温之差不超过0.2℃,以此2次体温的平均值为该兔的正常体温。且当日使用家兔的体温在38.0~39.6℃的范围内,各兔间正常体温之差不超过1℃。在家兔正常体温符合要求后15min内,自耳静脉缓慢注入预热38℃丹参纳米银复合材料浸提液,剂量为l0ml/kg。注射后每隔1h测量体温1次,6次体温中最高的1次减去正常体温为试验家兔体温升高值。

1.3.4 原发性皮肤刺激试验:受试家兔6只,实验前24h,脊柱两侧各选2个3cm×3cm面积的去毛区,用8%的硫化钠溶液去毛,间距l0cm。用75%(v/V)乙醇消毒背部去毛区,用2.5cm×2.5cm滤纸块浸泡于丹参纳米银复合材料的浸提液中至饱和,贴敷于试验部位。浸提介质生理盐水作为阴性对照,3.5%甲醛溶液作为阳性对照。材料贴敷于皮肤后,立即用3cm×3cm纱布块覆盖,最外层用胶布固定。贴敷固定24h后,移去贴敷物,用温水清洁贴敷区l并吸干,观察移去斑贴物后24、48和72h皮肤的红斑及水肿情况。计算原发刺激指数(PII),参考文献标准进行记分并评价。

1.3.5 皮内刺激试验:实验前24h,受试家兔脊柱两侧各剪剃5cm×25cm区域兔毛,应避免损伤皮肤。用75%(V/V)乙醇消毒暴露的皮肤。在兔脊柱两侧各选择10个点,每点间隔2cm,每点皮内注射剂量0.2ml。一侧前5点注射丹参纳米银复合材料生理盐水浸提液,后5点注射同批阴性对照生理盐水;另一侧前后5点分别注射丹参纳米银复合材料植物油浸提液和阴性对照植物油。注射后24、48、72h观察注射局部及周围皮肤组织反应,参考文献标准进行记分并评价。

1.3.6 急性全身毒性试验:将健康小白鼠随机分为试验材料组和对照两组,每组5只。试验组动物由尾静脉注射丹参纳米银复合材料生理盐水浸提液,剂量为50ml/kg。对照组动物由尾静脉注射同批号的生理盐水,剂量为50ml/kg。注射后于24、48、72h观察记录试验和对照组动物的一般状态、毒性表现和死亡动物数。观察指标参考文献标准。

1.3.7 银含量测定;0.2kg左右健康成年SD大鼠48只,随机分为正常对照组(12只),治疗I组(创面外敷丹参纳米银复合材料,12只)、治疗II组(创面外敷纳米银仿生敷料,12只)、治疗III组(创面外敷磺胺嘧啶银粉剂,12只)。治疗I组、II组、III组sD大鼠用取皮刀造成10%~13%TBSA(Tota]Body Surface Area)深II度切割伤。

治疗I组、治疗II组和治疗III组在治疗前和治疗后2天、4天、5天、7天、13天和16天眼眶采血,采用火焰原子吸收分光光度法测定sD大鼠血液中银的含量。当创面恢复半个月后处死SD大鼠,取其肝、脑、肾,用火焰原子吸收分光光度法测定各组织中的银含量。

1.3.8 统计学处理:银含量检测数据,用State 7.0统计软件进行分析。

2 结果

2.1 无菌试验结果:培养5天后,接种有丹参纳米银复合材料的需氧一厌氧菌培养管、环境监测的阴性对照管无菌生长,阳性对照管有菌生长;培养7天后,接种有丹参纳米银复合材料的真菌培养管、环境监测的阴性对照管无菌生长,阳性对照管有菌生长,说明该材料无菌。

2.2 热原试验结果:由表l可见,3只家兔体温升高均低于0.6℃,并且3只家兔体温升高总和低于1.4℃,说明该材料无热原。

2.3 原发性皮肤刺激试验结果:由表2可见,丹参纳米银复合材料浸提液贴敷家兔皮肤未见红斑,无水肿形成,说明该材料对家兔皮肤无刺激性。

2.4 皮内刺激试验结果:表3为皮内刺激试验的结果,可见丹参纳米银复合材料无皮内刺激反应。

2.5 急性全身毒性试验结果:急性全身毒性试验结果见表4。

2.6 全血中银含量的变化:从表5中可以看到丹参纳米银组、纳米银仿生敷料组各个时点血银的含量明显比磺胺嘧啶银组低,丹参纳米银组、纳米银仿生敷料组全血银含量无差异(P>O.05)。丹参纳米银组、纳米银仿生敷料组银含量最高是正常水平的7倍,而磺胺嘧啶银组高达26倍。第13天,丹参纳米银组、纳米银仿生敷料组SD大鼠血银含量基本恢复正常水平(与正常组银含量0.07±0.03/zg/g相比,P>0.05),而此时磺胺嘧啶银组SD大鼠银含量是正常全血银的5倍(P<0.01)。

2.7 各组织中的银含量:正常sD大鼠肝、脑、肾及血中银含量无统计学意义(p>0.05)。对深II度切割伤大鼠使用丹参纳米银复合材料、纳米银仿生敷料和磺胺嘧啶银后,各组织银含量都有不同程度的升高,其中肝银含量升高最多,其次为肾,说明肝脏对银的吸收最多,因此如过量吸收会首先造成对肝脏的损害。另外,磺胺嘧啶银组中各组织的银含量明显高于丹参纳米银组、纳米银仿生敷料组,其中磺胺嘧啶组肝脏中银含量是正常的近100倍(P<0.省略

上一篇:纳米氧化铝范文 下一篇:纳米硒范文