基于模糊算法的双足机器人路径规划

时间:2022-07-20 02:11:14

基于模糊算法的双足机器人路径规划

本文针对双足机器人路径规划对环境信息过于依赖和精确度不高的问题,提出了一种基于模糊算法的双足机器人局部路径规划方法。采用超声波传感器对静态未知环境进行探测,获取障碍物的信息,运用模糊推理将障碍位置信息与目标位置信息模糊化,建立模糊规则并解模糊,最终使双足机器人实现避障和最优路径规划。采用MATLAB的逻辑工具箱进行仿真实验,实验结果表明,模糊算法可以有效地减小双足机器人在路径规划中对于环境信息的依赖性,在保证实时性的同时提高了路径规划的精确度。

【关键词】模糊控制 双足机器人 路径规划 超声波传感器

机器人路径规划一直是机器人研究领域的热点问题。路径规划是在有障碍物的环境下找到一条由给定点到达目标点的最优路径,使机器人能够绕过障碍物,在不与障碍物相碰撞的情况下到达目标点。机器人在移动过程中必须安全无障碍的绕过所有障碍物,寻求一条安全的运动轨线判断并自动躲避障碍物顺利抵达目的地并且尽可能使所走路径最短。目前,常用的局部路径规划算法有势场法、A* 算法、栅格法及模糊算法。其中模糊算法有效的减小了对环境信息的依赖性,具有良好的鲁棒性和实效性。

本文主要采用模糊算法解决直立行走机器人在静态未知环境中的局部最优路径规划问题,并通过MATLAB仿真实验验证了模糊算法的有效性和可行性。

1 超声波传感器

双足直立机器人实现避障行走,首先需要对外界环境进行感知,探测到障碍物的方位。而超声波作为一种距离探测传感器,以其质量可靠,成本低廉为特点,在机器人测距中得到了广泛应用。基于双足直立机器人在速度上有限制的前提条件,采用周期扫描模式进行距离检测是最可行的方案,即将机器人的视野范围均分为若干份,记录每个视角检测到障碍物的距离,进而获得完整的外界环境的知识。同时为了消除机器人在运动过程中的抖动对测距的影响,为测距模块搭建了云台系统,使测距模块在运动过程中始终保持水平状态。

2 模糊控制器设计

2.1 确定模糊控制器的输入变量和输出变量

模糊控制器的输入是超声波采集的距离信号和双足机器人与目的地方向的夹角信息,输出是双足机器人的转动角度。双足机器人的构成包括支架、舵机、目标传感器、超声波传感器等部分。超声波采集的距离信息是机器人当前位置与障碍物的距离,超声波在机器人前进方向的180度范围内采集与障碍物的距离信息,取其中最左、最右及正前方的距离信息为三个输入变量,定义最左侧距离为DL、正前方距离为DC、最右侧距离为DR。通过目标传感器,确定双足机器人当前位置与目的地方向的夹角D0为角度输入变量。利用这些条件推理出输出变量OUT,即双足机器人的转动角度,如图1所示。

2.2 输入变量及输出变量的模糊化

定义距离输入变量的模糊语言为DL={Near,Far}, DC={Near,Far},DR={Near,Far};角度输入变量C0的论域为C0={LB,LM,LS,ZO,RS,RM,RB};输出变量OUT的论域为OUT={OLB,OLM,OLS,OZ,ORS,ORM,ORB}。各个变量的隶属度函数图形为对称三角形且模糊分割完全对称,DL、DR、DC、 C0及OUT的隶属度函数图形如图2中(a)-(e)所示。

2.3 确立模糊控制规则

模糊控制规则(控制策略)的选择是模糊控制器设计非常关键的一步。它是基于手动控制策略,是操作者经验和技术知识的集合 。模糊控制规则实际上是一系列模糊条件语句的集合,反映了输入量与输出量的关系。按照双足机器人的实际控制进行模糊逻辑推理,确定了四个输入信号,一个输出信号,构成一个多输入单输出的模糊控制系统。

双足机器人在行进过程中,根据与障碍物的距离信息及与目的地的夹角信息进行决策推理出转动角度,从而实现最佳的路径规划。当采集到障碍物信息时,双足机器人将转动一定角度,改变行进轨迹实现有效避障的功能。机器人行进规则如下:

(1)当目标点位于障碍物左(右) 侧时,则机器人左(右)转;

(2)当目标点在机器人正前方且障碍物距离机器人很近时,则机器人需根据它的左侧和右侧的障碍物信息来决定左转还是右转;

(3)当左侧障碍物距离大于右侧障碍物距离时, 机器人选择向左转,反之向右转。

根据确定的输入输出变量的论域,采用模糊规则的一般形式If(条件)then(结果)进行描述。模糊规则如表1所示。

2.4 模糊决策

模糊决策(模糊推理)是根据模糊逻辑的关系及推理规则来进行的 。根据模糊规则推出输出量的隶属度函数。下面将通过简单举例来说明模糊控制器的原理。

以双足机器人在DL=0 ,DC=2.5,DR=3,C0=8的状态为例,该状态对应模糊表中的第11、12、18条规则,由此状态下的模糊规则进行推理合成,得到输出量的隶属度函数。

第11、12、18条规则推理结果及合成隶属度函数结果如图3中(a)-(d)所示。

2.5 解模糊

经模糊推理得到的是一个模糊集合 。通过解模糊得到精确值,确定实际输出对双足机器人进行转角控制。MATLAB 提供5种解模糊方法:面积重心法、面积等分法、平均最大隶属度法、最大隶属度取小法和最大隶属度取大法 。本文模糊控制器采用面积重心法进行解模糊,将模糊输出量清晰化,得到精确值来控制双足机器人转动角度。

3 Matlab实验仿真

在Matlab中进行双足机器人路径规划仿真实验,实验中圆形障碍物的半径和位置随机设置,起点设定为原点,终点的位置任意设置, 进行路径规划的同时描绘出机器人的运动轨迹,仿真实验可以在任意环境下检验算法的正确性和可靠性。实验结果如图4所示。

由图4可知(a)图起点为(0,0),目标点为(500,550);(b)图起点为(0,0),目标点为(300,350)。改变目标点位置,障碍物随机设定,机器人均可实时躲避障碍物,并规划出最短路径,验证了利用模糊算法进行双足机器人路径规划的有效性和可行性。

4 小结

本文介绍了基于模糊控制算法的双足机器人路径规划方法,系统的描述了模糊规则控制器的建立,利用MATLAB进行了仿真实验,实验结果表明模糊算法可以有效地减小双足机器人在路径规划中对于环境信息的依赖性,保证了实时性并提高了双足机器人路径规划的精确度。

参考文献

[1]曹宇杰,邓本再,詹一佳.基于模糊神经网络的RoboCup足球机器人局部路径规划方法研究[J].电子设计工程,2015(23):141-144.

[2] 李庆春,高军伟,谢广明.基于模糊控制的仿生机器鱼避障算法[J].兵工自动化,2011,30(12):65-69.

[3]孙大勇,苏庆宇.井下机器人路径规划中的模糊逻辑控制算法[J].电气技术, 2007(3):47-49.

[4]霍迎辉,张连明.一种移动机器人的路径规划算法[J].自动化技术与应用,2003,22(5):8-10.

[5]王妹婷,陆柳延,齐永锋,等.基于模糊算法的水下机器人路径规划研究[J].机床与液压,2014(3).

[6]张营,鲁守银.基于模糊控制算法的变电站巡检机器人路径规划[J].制造业自动化,2015(11):53-55.

[7]郝宗波,洪炳熔.未知环境下基于传感器的移动机器人路径规划[J].电子学报,2006,34(5):953-956.

[8]刘丽萍.硒砂瓜温室种植模糊控制系统设计[J].电子设计工程,2012,(20):62-64.

[9]高扬,孙树栋,赫东锋.部分未知环境中移动机器人动态路径规划方法[J].控制与决策,2010,25(12):1886-1889.

[10]姚毅,陈光建,贾金玲.基于模糊神经网络算法的机器人路径规划研究[J].四川理工学院学报:自然科学版,2014, 27(6):30-33.

[11]柳长安,鄢小虎,刘春阳,等.基于改进蚁群算法的移动机器人动态路径规划方法[J].电子学报,2011,28(5):1220-1224.

[12]黄大志,张元良,陈劲松.基于模糊控制的自主寻迹机器人研究[J].机床与液压,2012,40(9):35-37.

[13]朱兴柯,叶飞,李斌,等.变电站巡检机器人运动控制系统研究[J].现代制造, 2014(30):122-124.

[14]陈卫东,朱奇光.基于模糊算法的移动机器人路径规划[J].电子学报, 2011(4):971-974.

[15]肖瑛,董玉华.一种级联混合小波神经网络盲均衡算法[J].信息与控制,2009, 38(4):479-483.

作者简介

鲁红权(1994-),男,河北省唐山市人。现为华北理工大学学生。研究方向为智能机器人控制。

作者单位

华北理工大学 河北省唐山市 063000

上一篇:如何提高中职学生会计从业资格证《会计基础》... 下一篇:GPON网络技术应用与发展趋势研究