岩土项目施工中深基坑开挖支护技术的应用探析

时间:2022-07-11 06:55:13

岩土项目施工中深基坑开挖支护技术的应用探析

摘要:随着我国经济的发展和城市化水平的提高,在城市建设用地日趋紧张的今天,建筑工程向着重型化、超高层趋势发展。为了合理利用地下空间,许多大型建筑物都会建设地下停车场等地下设施,深基坑支护技术随之迅速发展。本文结合笔者的工作经验,简要分析了岩土项目施工中深基坑开挖技术的应用,以供探讨。

关键词:岩土施工深基坑支护技术

中图分类号:TV551文献标识码: A

我国岩土项目施工中深基坑开挖支护技术的应用现状

二十世纪九十年代后,在改革开放和国民经济持续高速增长的形势下,工程建设亦突飞猛进,超高层建筑迅猛发展,建筑高度越来越高,同时各地还兴建了许多大型地下市政设施、地下商场、地铁车站等,导致多层地下室逐渐增多,基坑开挖深度远超过10米,其埋置深度也就越来越深,对基坑工程的要求越来越高,为了保证建筑物的稳定性,建筑基础都必须满足地下埋深嵌固的要求。随之出现的问题也越来越多,这给建筑施工、特别是城市中心区的建筑施工带来了很大的困难。经过实际工程的应用,相关的设计与施工人员积累了丰富的经验,根据技术的不断创新,使得大量的新结构、新工艺出现。经过多年的深基坑的支护技术应用实践,基本形成了一个根据不同地形、地质条件、不同经济条件的的深基坑支护技术体系。

基坑工程的特点分析

基坑工程主要包括基坑支护体系设计与施工和土方开挖,是一项综合性很强的系统工程。它要求岩土工程和结构工程技术人员密切配合。基坑支护体系是临时结构,在地下工程施工完成后就不再需要。建设部建质200987号文关于印发《危险性较大的分部分项工程安全管理办法的通知》规定:一般深基坑是指开挖深度超过5米(含5米)或地下室三层以上(含三层),或深度虽未超过5米,但地质条件和周围环境及地下管线特别复杂的工程。具有以下特点:

系统性

基坑工程是系统工程,主要包括支护体系设计和土方开挖两部分。土方开挖的施工组织是否合理将对支护体系是否成功具有重要作用。不合理的土方开挖、步骤和速度可能导致主体结构桩基变位、支护结构过大的变形,甚至引起支护体系失稳而导致破坏。同时在施工过程中,应加强监测,力求实行信息化施工。此外,基坑工程不仅需要岩土工程知识,也需要结构工程知识,需要土力学理论、测试技术、计算技术及施工机械、施工技术的综合。

区域性

如软粘土地基、黄土地基等工程地质和水文地质条件不同的地基中基坑工程差异性很大。同一城市不同区域也有差异。基坑工程的支护体系设计与施工和土方开挖都要因地制宜,根据本地情况进行,外地的经验可以借鉴,但不能简单搬用。

独特性

基坑工程的支护体系设计与施工和土方开挖不仅与工程地质水文地质条件有关,还与基坑相邻建筑物和地下管线的位置、抵御变形的能力、重要性,以及周围场地条件等有关。有时保护相邻建筑物和市政设施的安全是基坑工程设计与施工的关键。这就决定了基坑工程具有很强的个性。因此,对基坑工程进行分类、对支护结构允许变形规定统一标准都是比较困难的。

(四)风险性

基坑支护体系是临时结构,安全储备较小,具有较大的风险性。基坑工程施工过程中应进行监测,并应有应急措施。在施工过程中一旦出现险情,需要及时抢救。在开挖深基坑时候注意加强排水防灌措施,风险较大应该提前做好应急预案。

深基坑开挖支护技术在岩土项目施工中的应用分析

(一)深层搅拌桩支护技术

深层搅拌桩是加固软土地基的一种新方法,它是利用水泥、石灰等材料作为固化剂通过深层搅拌机械,将软土和固化剂强制搅拌,利用固化剂和软土之间所产生的一系列物理化学反应,使软土硬结成具有整体性,水稳定性和一定程度的桩体。深层搅拌最宜于各种成因饱和软粘土等,包括淤泥,淤泥质土、粘土和粉质粘土等。基坑开挖不宜大于6米,对于有机质土,泥炭质土,含有伊里石、氯化物等粘性工及酸碱度较低的粘性土,宜通过试验确定。国内最大加固深度可达15~18米。

(二)排桩支护技术

排桩支护是指队列式间隔布置钢筋混凝土挖孔,钻孔灌注桩,作为主要的挡土结构,其结构形式可分为悬臂支护或单锚杆,多锚杆结构,布桩形式可分为单排或双排布置。桩的嵌固深度、桩径和配筋根据坑深、支撑布置和周围环境要求等计算确定。排桩中应用最广泛的是钻孔灌注桩。一、二、三级基坑皆可应用。一般当基坑深8到14米且周围环境要求不高时多考虑采用。悬臂式支护适用于开挖深度不超过10米,粘土层不超过8米砂性土层,以及不超过5米的淤泥质土层。

(三)钢板桩支护技术

钢板桩支护是由钢板桩、锚拉杆组成。由于钢板本身刚性不足,其支撑或锚拉系统如果设置不当,会产生较大的变形。但其优点是一种施工简单,投资经济,施工机械化程度要求不高的支护方法。但基坑深度超过7米以上的软土地层,基坑不宜采用钢板桩支护,如要采用此种支护方法,必须设置多层支撑或锚拉杆。

(四)土钉支护技术

土钉支护是近年来发展起来的用于土体开挖和边坡稳定的一种 技术。由于施工可靠且施工快速简便,施工机械化程度要求不高,已在许多国家中迅速推广和使用,所谓"土钉"就是置入于现场原位土体中以较密间距排列的细长金属杆件,通常还外裹水泥砂浆或水泥净浆体。土钉通长与周围土体接触,依靠接触界面上的粘结力和磨擦力与周围土体形成一个结合体,在土体发生变形的条件下被动受力,且主要通过受拉工作对土体进行加固。

(五)地下连续墙支护技术

是指在深层地下浇注一道钢筋混凝土墙,既可起挡土护壁,又可起隔渗作用,还可以成为工程主体结构的一部分,也可以代替地下室墙的外模板。地下连续墙也可简称地连墙,地连墙施工是利用特制的成槽机械,在泥浆护壁的情况下,开挖一定深度的沟槽,然后吊放钢筋笼,浇筑混凝土,施工时,可以分成若干单元(5-8米一段),然后将各段进行接头连接,形成一通地下连续墙。但其缺点为要用专用设备施工,施工机械化程度要求较高,单体施工造价高;其优点为各种地质条件,及复杂的施工环境适应能力较强,施工不必放坡,不用支撑。国内地下连续墙的深度可达36米,壁厚1米。

(六)锚杆或喷锚支护

锚杆与土钉墙支护相似,将锚杆锚入稳定土体中,外墙与支护结构连结用以维护基坑稳定的受拉杆件,并施加预应力。锚杆可与排桩,地下连续墙,土针墙,其他支护结构联合使用,不宜用于有机土,液限大于50%的粘土层及相对密度少于0.3%的砂土。喷锚支护是从隧道岩石锚杆引入的一种新型基坑支护技术,当深基抗邻近有建筑物,交通干线或地下管线影响,基坑不能放坡开坑时,采用喷锚支护可以支承挡土墙,维护坑壁稳定,简化坑内支撑,改善施工条件。

(七)拱圈支护技术

拱圈分闭合拱和非闭合拱,拱圈形成包括圆拱、椭圆拱和二次曲线拱。这种拱圈挡土能承受水平方向的土压力,因拱的内力以受压力为主,弯距很少,能充分发挥混凝土抗压强度高的特性。施工方便,施工机械化程度要求不高,施工速度较快。施工现场要适合拱圈布置,构造应符合圆环受力特点。要特别注意的是拱脚的稳定性,并对其稳定性要有可靠的保证措施。

总结:在岩土项目深基坑的施工中,必须根据建筑物的占地面积、基坑的边缘距、地质条件等进行合理设计,选择适宜的支护技术,这是确保深基坑施工安全的关键措施。由于深基坑支护工程既要保证基坑四周稳定,又要具有良好的止水效果,因此,应选择适宜的支护方法,避免对周围的道路、建筑物、地下管道等的危害和影响。

参考文献:

[1]封骥 《建筑工程中深基坑支护技术的施工关键性问题研究》 [J].中小企业管理与科技2009 (11).

[2]晁得祥《建筑工程深基坑支护方案的设计》 [J].中国住宅设施2011 (06).

上一篇:讨论如何做好水文遥测设备管理与维护 下一篇:有关建筑工程框架结构设计的主要问题浅析