CDMA系统中的定位技术及其应用

时间:2022-06-14 06:10:07

CDMA系统中的定位技术及其应用

摘要:描述了移动通信系统的主要定位技术及其特点对各种定位技术进行了比较和分析,介绍了CDMA系统中的定位技术及其承载的应用。

关键词:定位技术;CDMA

中图分类号:TP311文献标识码:A文章编号:1009-3044(2010)18-4921-04

The Positioning Technolog and Application in CDMA System

ZHU Hai-Ling

(Minjiang University, Fuzhou 350011, China)

Abstract: This paper induces main technical characters of the Mobile Communication system in positioning, points out the technical of CDMA systemby comparing and analyzing different positioning technologies,andoutlines applications that base on CDMA system.

Key words: location technology; CDMA

无线定位服务是从美国开始启动和发展起来的。1996年,美国联邦通信委员会(FCC)强制要求所有无线业务提供商,在移动用户出发紧急呼叫时,必须向公共安全服务系统提供用户的位置信息和终端号码,以便对用户实施紧急救援工作,并要求到2001年10月,67%的呼叫定位精度达到125m。此后,日本、德国、法国、瑞典、芬兰等国家纷纷推出各种各具特色的商用定位服务。

随着无线系统的发展和移动用户的不断增加,对定位业务的需求也与日俱增,例如公共安全、紧急救援服务、基于位置的计费、资产管理、欺诈检测和路由向导等等业务,而不同的定位业务对定位精度的要求不相同,相应地,所需的定位技术也不同,例如基于位置的计费要求的定位精度不高,使用CELL ID(小区识别)定位技术即可实现;而路由向导要求比较高的定位精度,只能使用GPS(Global Positioning System)定位技术和混合定位技术才能实现。

这些需求大大推动了定位技术的发展,经过多年对无线定位的研究,现已开发出了多种定位技术,并在此基础上,各种各样的定位业务和应用也蓬勃发展起来。

1 蜂窝网中主要的定位技术

无线定位技术是通过对接受到的无线电波的某些参数进行测量,根据特定的算法以判断出北测物体的位置,测量参数一般包括传输时间、幅度、相位、和到达角等等。定位精度主要取决于测量的方法。

1.1 基于Cell ID的技术

在目前CDMA网络中,BSC会在移动台的位置更新、呼叫处理、短消息传送以及切换等过程中将用户所在基站扇区的Cell ID传送给MSC。这种方法实现简单,终端侧不需要作任何软硬件的修改,网络侧不需要增加新我得网络实体。但定位精度不高,定位范围与扇区覆盖相同,在城市基站密集区定位的半径可达到400m左右,在基站密度较低的郊区等地,定位精度非常低,因此只能提供对定位精度要求不高的定位业务,如基于小区位置的计费,无法实现高级的应用。

1.2 AOA(Angle of arrival)

测量信号的到达角度(Angle Of Arr技ive,简称AOA)也是一种在蜂窝网中常用的定位技术。这种方法需要在基站采用专门的天线阵列来测量特定信号的来源方向。对于一个基站来讲,AOA测量可以得出特定移动站所在方向,当两个基站同时测量同一移动站所发出的信号时,两个基站各自测量AOA所得的方向直线的焦点就是移动站所在的位置。尽管这种定位方法的原理非常简单,但在实际的应用中存在一些难以克服的缺点。首先,AOA定位要求被测量的移动站与参与测量的所有基站之间,射频信号是视线传输(LOS)的。非视线传输(NLOS)将会给AOA定位带来不可预测的误差,参见图1。即使是在以LOS传输为主的情况下,射频信号的多径效应依然会干扰AOA的测量。其次,由于天线设备角分辨率的限制,AOA的测量精度是随着基站与移动站之间的距离的增加而不断减小的。

由于测量AOA的定位方法具有上述的特点,所以对于处于城市地区的微小区来讲,引起射频信号反射的障碍物多且其到移动站的距离与小区半径可以相比,这样就会引起比较大的角测量误差。在这种情况下,基于AOA的定位方法没有实际的意义。对于宏小区,因为其基站一般处于比较高的位置,与小区的半径相比,引起射频信号反射的障碍物多位于移动站附近,NLOS传输引起的角测量误差比较小。所以测量信号到达角度的定位方法多用于宏小区,或者与其他定位技术混合使用来提高定位的精度。由于测量AOA的定位方法具有上述的特点,所以对于处于城市地区的微小区来讲,引起射频信号反射的障碍物多且其到移动站的距离与小区半径可以相比,这样就会引起比较大的角测量误差。在这种情况下,基于AOA的定位方法没有实际的意义。对于宏小区,因为其基站一般处于比较高的位置,与小区的半径相比,引起射频信号反射的障碍物多位于移动站附近,NLOS传输引起的角测量误差比较小。所以测量信号到达角度的定位方法多用于宏小区,或者与其他定位技术混合使用来提高定位的精度。

1.3TOA(Time of Arrival)

TOA是一种基于方向链路的定位方法,通过测量移动台信号到达多个基站的传播时间来确定移动用户的位置。与AOA相比较,在同等条件下(参与定位的基站数目相同)能够提供更高的定位精度,因而在实际中应用得最广泛。测量信号到达时间(TOA),即由基站向移动站发出特定的测距命令或指令信号,并要求移动站对该指令进行响应。基站会记录下由发出测距指令到收到移动站确认信号所花费的时间T,该时间主要由射频信号在环路上的传播时延、移动站的响应时延和处理时延、基站的处理时延组成。如果能够准确地得到移动站和基站的响应和处理时延,就可以算出射频信号的环路传播时延Td。因为无线电波在空气中以光速c传播,所以基站与移动站之间的距离估值dm=c*Td/2。当有三个基站参与测量时,就可以根据三角定位法来确定移动站所在的区域,如图2所示。

由于这种定位方法是以时间为基准的,多径效应和非视线传输(NLOS)所带来的传输时延增加是产生测距和定位误差的主要原因,所以在实际的系统中,测距结果dm一般都要大于基站与移动站之间的实际距离d。为了克服NLOS以及多径效应带来的不利影响,提高定位精度,参与同次定位的基站数目N一般都要大于3,这样可以缩小图2中阴影区域的面积。另外对于每次测量的结果都要应用一些定位算法,使定位估计值在某种准则下达到误差最小。例如,T是每个基站测得的TOA,i为参与测量的基站编号,在某坐标系下,移动站的位置估计是(x,y),基站i的位置是(xi,yi)。以函数fi=c*Ti-作为基站BS测距的性能测度,也就是基站BS的测距误差。在理想状态下,即当(x,y)是移动站的实际位置,并且移动站到每一个基站无线信号都是视线传输(LOS)的,那么对每一个参与测量的基站来讲,fi应该为零。但在实际中,由于受到NLOS传输和多径效应的影响,一般不可能求得(x,y)使fi=0(i=1,2,...,N)都成立。所以整个定位系统来讲,可以用参与定位的基站的测距误差的加权平方和F作为系统性能测度函数,并以使F最小的(x,y)作为一次定位测量的结果。式中ai是基站BS在测量结果中的加权系数,其大小反映了BS到MS测距的精确性和可信程度。

1.4 TDOA(Time Different of Arrival)

TDOA是一种基于反向链路的定位方法,是通过测量不同基站接收到同一移动站的定位信号的时间差(TDOA),并由此计算出移动站到不同基站的距离差。移动站到任何两个基站的距离差d可以在两个基站之间给出一条双曲线,移动站一定处于该曲线之上。当同时有N个基站参与测距时(N≥3),由多个双曲线之间的交汇区域就是对用户位置的估计,如图3所示。这种方法要求所有参与测量的基站的时钟是严格同步的。与TOA相比,它的主要好处是不需要精确地求得基站和移动站的响应和处理时延。与TOA一样,TDOA的定位误差也是主要来自射频信号的非视线传输和多径效应。解决这一问题的主要途径也是通过增加参与定位的基站数目和采用高精度的估计算法。

TDOA方法不要求知道信号传播的具体时间,还可以消除或减少在所有接收机上由于信道产生的共同误差,在通常情况下,定位精度高于TOA方法。但由于功率控制造成离服务基站近的移动台发射功率小,使得相邻基站接受到的功率非常小,造成比较大的测量误差,即相邻基站接受到的功率非常小,造成比较大的测量误差,即相邻基站的SNR太小带来的测量误差。目前针对这种情况已有了一些解决办法,如在E-911呼叫时将移动台发射功率瞬间调到最大,可以提高定位精度,但会对CDMA网络的容量有一定程度的影响。

1.5 AFLT(Advanced Forward Link Trilateration)技术

AFLT是一种基于前向链路的定位方法,在定位操作时,手机同时监听多个基站(至少三个基站)的导频信息,利用码片时延来确定手机到附近基站的距离,最后用三角定位法算出用户的位置。它需要在网络中增加新的实体,利用导频信息算出移动台的位置,这些实体包括PDE(Position Deltermining Entity)和MPC(Mobile Positioning Center)。PDE获得导频信息的方式主要有两种:

1) 按照IS-801协议定义的传送方式给MSC,再由MSC传送给PDE,这种方式需要移动台新增支持IS-801协议的功能。

2) 利用A接口的消息,将用于定位的参数传送给MSC,再由MSC传送给PDE。这种方式,不需要移动台支持IS-801协议,但需要在A接口上支持这些参数的传输,A接口的Release 版本中已经定义了传送这些参数的消息。

移动台MPC需要软件升级,同时,根据PDE获得导频信息方式的不同决定移动台是否需要支持IS-801协议,网络侧需要支持IS-801协议,定位算法可以放在移动台上或者网络侧。其定位精度介于小区识别和GPS定位技术之间,定位半径一般在200至400m左右,最高可达到100m。影响精度的主要因素是基站密度和地形环境,如在大城市基站密集的地方,定位精度相对高。

1.6 基于GPS系统的定位技术

GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。如图3所示,假设t时刻在地面待测点上安置GPS接收机,可以测定GPS信号到达接收机的时间t,再加上接收机所接收到的卫星星历等其它数据可以确定以下四个方程式:

上述四个方程式中待测点坐标x、 y、 z 和Vto为未知参数,其中di=cti (i=1、2、3、4)。

di (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4到接收机之间的距离。

ti (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的信号到达接收机所经历的时间。

c为GPS信号的传播速度(即光速)。

四个方程式中各个参数意义如下:

x、y、z 为待测点坐标的空间直角坐标。

xi 、yi 、zi (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4在t时刻的空间直角坐标,

可由卫星导航电文求得:Vt i (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的卫星钟的钟差,由卫星星历提供。Vto为接收机的钟差。

由以上四个方程即可解算出待测点的坐标x、y、z 和接收机的钟差Vto 。该系统是通过解调50波特率卫星导航消息来确定:轨道中卫星的准确位置(星历和年历信息)和每颗卫星的时钟校准信息以及其它数据

基于GPS系统的定位技术,其优点是定位精度较高,定位半径可达到几米、十几米。因此利用该重定位技术,可提供对定位精度要求较高的业务,如电子地图显示用户位置等。其缺点是需要移动台内置GPS天线和GPS芯片等模块,并且需要支持IS-801协议,网络侧需要增加PDE和MPC;定位精度受终端所处环境的影响较大,如用户在室内或在高大建筑物之间时,由于可见的GPS卫星数量较少,定位精度将降低,甚至无法完成定位。

1.7 网络辅助GPS(A-GPS)定位技术

GPS技术是一种结合了网络基站信息和GPS信息对移 动台进行定位的技术,可以在GSM/GPRS、WCDMA和CDMA2000网络中使用。该技术需要在手机内增加GPS接收机模块,并改造手机天线,同时要在移 动网络上加建位置服务器、差分GPS基准站等设备。如果要提高该方案在室内等GPS信号屏蔽地区的定位有效性,该方案还提出需要增添类似于EOTD方案中的位测量单元(LMU)。AGPS的具体工作原理如下所示:

1) AGPS手机首先将本身的基站地址通过网络传输到位置服务器;

2) 位置服务器根据该手机的大概位置传输与该位置相关的GPS辅助信息(包含GPS的星历和方位俯仰角等)到手机;

3) 该手机的AGPS模块根据辅助信息(以提升GPS信号的第一锁定时间TTF能力)接收GPS原始信号;

4) 手机在接收到GPS原始信号后解调信号,计算手机到卫星的伪距(伪距为受各种GPS误差影响的距离),并将有关信息通过网络传输到位置服务器;

5) 位置服务器根据传来的GPS伪距信息和来自其他定位设备(如差分GPS基准站等)的辅助信息完成对GPS信息的处理,并估算该手机的位置;

6) 位置服务器将该手机的位置通过网络传输到定位网关或应用平台。

虽然AGPS技术的定位精度很高、首次捕获GPS信号时间短,但是该技术也存在着一些缺点。首先,室内定位的问题目前仍然无法圆满解决。另外,AGPS的定位实现必须通过多次网络传输(最多可达六次单向传输),这对运营商来说是被认为大量的占用了空中资源。AGPS最主要的问题是用户对于使用移 动定位业务必须更换手机难以接受。而且AGPS手机比一般手机在耗电上有一定的额外负担,间接减短了手机的待机时间。除此之外,就是使用有效性问题。由于GPS系统受美国政府拥有和控制,在非常时期(如海湾战争、反恐战争等),民用GPS服务可能会受到影响,AGPS的定位业务更难以正常运作了。目前,AGPS的方案提供商主要是美国高通公司和其子公司Snaptrack公司,现在还只能用于CDMA和iDEN网络的市场,在不久的将来该定位技术还会用于GSM网络

1.8 混合定位(A-GPS+ALFT)

混合定位技术是综合了上述定位技术中的两种或多种方法在一个系统中,目前CDMA系统采用的主流方法是A-GPS和AFLT混合定位的方式,可简称为网络辅助混合定位。它结合了基于网络的非GPS定位技术和基于GPS的网络辅助定位技术的优点。在野外,可以利用GPS定位提供高精度的位置信息,同时网络侧可以提供辅助信息来缩短定位时间和提高定位精度;在城市,可以利用基站密集的优势,提供基于基站信号,或者GPS和基站信号混合的方式定位,实现在复杂环境下(如室内、城市高楼之间)的精确定位。如果同时利用智能化算法可以获取更佳的定位效果。例如,当移动台只能接收到两个基站的信号时,通常无法定位移动台,但是网络可以根据过去移动台的方向和速度,结合基站信号来唯一确定移动台的位置。而且还可以利用来自无线网络的一些重要信息加快处理进程,缩短卫星数据采集时间。

2 CDMA系统中定位技术的比较与选择

以上介绍的八种定位技术,所能达到的定位精度不同、适用的环境不同,对终端和网络的要求也不同。在选择定位技术时,应根据各种定位技术的特点、不同的定位业务需求及终端和网络的实际情况,选取不同的定位技术方案。目前在CDMA系统中使用的定位技术通常有基于CELL-ID技术、TOA/TDOA技术、AFLT技术、A-GPS技术、混合定位技术五种。

1) CELL-ID技术

基于CELL-ID的定位技术,实现简单,终端侧不需要作任何软硬件的修改,网络侧不需要增加新的网络实体,其定位精度与小区的定位半径和基站的密集程度有关,而CDMA系统具有覆盖范围广的特点,并且在市区基站比较密集,所以在CDMA系统中我们通常利用CELL-ID技术来实现一些对于定位精度要求不高的业务,例如天气预报等

2) TOA/TDOA技术

TOA/TDOA技术的实现终端不需要修改只需要增加网络实体和软件修改,一般来说这一方案不论是从成本变化考虑还是从其技术实现也都较容易实现,并且TOA/TDOA能够提供比较高的定位精度,因而应用较为广泛,现存的CDMA系统多采用这种方法。但在CDMA系统中采用TDOA定位也面临一些问题,如由于功控,当移动台靠近基站时信号功率降低,使得当移动台离开一个基站而向另一个基站靠近时TOA测量精度下降,此技术主要用于紧急救援等定位业务。

3) AFLT技术

AFLT技术是蜂窝电话网络自身定位技术的一种,它是利用CDMA手机接收到不同基站发出的信号到达该手机的时间差,通过手机内置软件计算经纬度。定位精度较 E-OTD高,无需改动网络,只需要增加网络实体,终端需要软件升级;室内定位效果好,但在基站稀少区域,如郊区,定位效果差。其他蜂窝电话网络如GSM/GPRS也有类似自定位技术,但由于CDMA是唯一全网同步(通过GPS)网络,因此定位精度在现存网络中是最高的。现主要应用于LBS、LCS等定位业务

4) A-GPS技术

GPS技术可提高GPS定位精度、灵敏度和冷启动速度、降低终端耗电。避免了象传统GPS技术那样过于依赖终端性能而是尽量将终端的工作简化使得首次捕获GPS信号的时间大大减低,只要几秒的时间。现主要应用于LBIS、FAM等定位业务。

5) 混合定位技术(A-GPS+ALFT)

当今在CDMA系统中最先进的混合定位技术就是美国高通公司推出的gpsone定位技术,这种技术是将无线网络辅助GPS与CDMA三角运算的有机结合使两种定位技术在不同的定位环境中优劣势得到互补:在农村或郊外CDMA三角定位因无线基站稀少精度较差,而无线网络辅助GPS定位在这些环境中正好充分发挥优势; 反之,在地下停车场,高架桥下及高楼大厦林立等区域,无线网络辅助GPS定位较为困难,而在这些区域由于CDMA基站往往分布较密,因此CDMA三角定位技术的优势得以充分发挥。另外,为了进一步确保定位成功率,在gpsOne定位失败的情况下将使用CELL-ID进行定位。gpsOne直接利用了CDMA固有的能力和体系结构来实现与CDMA接收链的紧密集成,使运行在CDMA网络上的gpsOne系统更具优势。。无论在室内还是室外,只要有CDMA 1X网络覆盖的地方即可实现定位,此外,gpsOne技术缩短了移动设备寻找可用卫星的时间,缩短了定位时间。现主要应用于紧急救援、LBS、LCS、LBIS、FAM、电子地图、ECR等定位业务。

通过上述分析可见:如果不对终端和网络实体进行修改,则只能选择基于小区标识的定位技术,但该种定位技术由于定位精度较低,开展业务受限,因此仅可以作为一种最基本的技术采纳。虽然基于GPS的定位技术定位精度高,但对终端的要求比较高,同时该技术不能在所有的环境中都能使用(如室内),因此,为了提高CDMA网络的竞争力,提供比其他网络更丰富的定位业务,建议应采用混合定位技术作为现在的主要候选技术,即AFLT和GPS混合定位技术。而且此项定位技术将成为CDMA系统中定位技术的主流。

3 承载的多种应用

随着CDMA无线系统的不断演进和定位技术研究的进一步深化,定位业务也越来越丰富,定位技术可应用于紧急呼叫救援、汽车防盗、贵重物品运输跟踪、“儿童安全电话” 等。

3.1 紧急救援

用户在不知道自己位置的情况下,拨打救援中心的电话(如中国的110、美国的911电话)后,移动通信网络就会将获得的用户位置信息和用户的语音信息一并传送到救援中心。报警用户位置信息对于救援人员迅速到达现场很重要,救援中心接到呼叫后,根据得到的用户位置信息,就能采取迅速、高效地救援活动,大大提高了救援的成功率。

3.2 LCS(Location Services)

LCS指网络可以将用户位置信息提供给其它应用实体的服务。请求用户位置的实体可以是:无线用户本身;增值业务实体,如商业网站、完全部门等;无线网络本身,用于计费、客户服务系统等。该业务是其它定位服务的基础,在此基础上LCS客户端可以派生出许多不同的应用。

3.3LIR(Location Information Restriction)

LIR定义了定位业务和保密业务,提供用户四种位置信息限制级别:

1) 无条件禁止:只允许运营商的LCS客户端(如为智能网服务的LCS)或者特殊的LCS客户端(如安全部门等)获取位置信息;

2) 预先授权的LCS客户端:除第一级以外,还允许用户半永久性地授权LCS客户端获取自己的位置信息;

3) 预先授权的LCS客户端和用户批准的客户端:除第二级以外,还允许用户暂时授权LCS客户端获取自己的位置信息,此批准只在一段时间内有效;

4) 无限制。

3.4 LBC(Location Based Charging)

LBC业务是根据用户所处的区域不同,采用不同等级的费率进行计费。对于用户日常生活、工作所在的区域可以采取优惠费率进行计费,当用户签约了这些区域,在这些区域中就可以得到优惠的费率。

LBS不仅可以提供基于不同区域的计费,还可以为用户提供在不同区域基于每天不同的时段或每周不同的天进行的计费。当用户跨越不同的计费区域或计费时段时,网络会自动通知用户所在的计费区域和所享受的费率。

3.5FAM(Fleet and Asset Mannagement)

FAM允许FAM管理者跟踪FAM成员的位置和状态,FAM成员使用业务码向FAM管理者反向报告其状态的信息。FAM管理者还能向其成员传递电话呼叫、邮件、短消息等信息。典型的应用包括:销售商跟踪他的雇员或者自动售货机的位置和状态,父母了解子女的位置等。(下转第4926页)

(上接第4924页)

3.6ECR(Enhanced Call Routing)

ECR业务属于呼叫中的语音业务,其目的是得到基于用户当前位置最近的路由,如寻找最近的加油站、餐馆等。SCP得到来自MPC的位置信息之后,通过外部接口查询与位置信息相关的路由信息,并返回给MSC进行呼叫连接。

3.7 LBIS(Location Based Information Service)

LBIS容许用户访问根据其当前所处位置进行内容裁剪的信息服务。包括:旅馆餐馆服务、旅游信息服务、路边援救服务、黄页号簿服务、自我定位服务、交通信息服务。LBIS业务的承载方式有三种:话音、电子地图、短消息。

4 结束语

定位业务作为CDMA系统的特色业务,具有自己独特的优势,它利用CDMA无线系统本身独有的特性来实现用户的定位,如终端与网络严格的时钟同步、基站可以提供GPS导航信息以及手机可以利用基站导频信号的码片时延来确定距离等特性,从而简化了定位精度;此外,现有的CDMA网络可以比较容易地升级成为支持定位业务的网络,而且CDMA的定位过程对现有的业务的影响也比较小。基于这些特性,现有的CDMA系统更容易实现比较精确的定位功能,并可以提供优于其他网络的定位业务。随着CDMA无线系统的不断演进和定位技术研究的进一步深化,必将会提供更多、更丰富的定位业务和应用。

参考文献:

[1] 唐毅,杨博雄.移动定位的基本原理及技术研究[J].通信市场,2003,10.

[2] 常永宇,样宁.CDMA无线定位技术及其应用[J].通信技术,2003.

[3] Domenico Porcino. Philips Research Laboratories. "Standardisation of Location Technologies" Mobile Location Wrokshop June,2001.

[4] James J. Caffery. Jr. and Gordon L. Stuber."Overview of Radiolocation in CDMA Cellular Systems". IEEE Communications Magazine April 1998 pp.38-45.

[5] "An Overview of Wireless Indoor Geolocation Techniques and Systems". Kaven Pahlavan. Xinrong Li. Mika Ylianttila. Ranvir Chana. And Matti Latva-aho. Mobile and Wireless Communications Networks. IFIP-TC6/European commission NETWORKING 2000 International Workshop. MWCN 2000. Paris France. May 2000.

上一篇:探讨XML数据库技术 下一篇:中央空调模糊控制系统MATLAB仿真