卒中、类风湿关节炎与同型半胱氨酸的关联因素

时间:2022-06-08 01:42:45

卒中、类风湿关节炎与同型半胱氨酸的关联因素

[摘要] 自从人们认识到同型半胱氨酸水平升高可独立引起动脉粥样硬化性血栓形成及血管内皮损伤并将其命名为高同型半胱氨酸血症,它一直都是研究的热点。不仅如此,同型半胱氨酸和类风湿关节炎的关系也尤为密切。同型半胱氨酸可以引起血管损伤并改变一些特定蛋白质的结构,造成新的可能会引起自身免疫反应的抗原的产生,因而同型半胱氨酸有可能是引起一些自身免疫疾病如类风湿关节炎的启动因素。这提示同型半胱氨酸和一些自身免疫疾病的相关性。同型半胱氨酸可以通过免疫-炎症作用引起心脑血管的损害。而免疫-炎症反应可能会增加同型半胱氨酸的水平,并损害特定的组织(心血管疾病中的血管内皮损伤、类风湿关节炎的滑膜损伤)。同型半胱氨酸和自身免疫疾病(免疫炎症反应)之间存在这样的双向作用。在本综述中,将阐述同型半胱氨酸作为卒中和类风湿关节炎之间的关联因素的合理解释,认为同型半胱氨酸是引起卒中和类风湿关节炎的因素之一,可以对这一点进行干预从而防控这两种不同的疾病。

[关键词] 同型半胱氨酸;炎症;自身免疫疾病;卒中;类风湿关节炎

[中图分类号] R743.3 [文献标识码] A [文章编号] 1673-7210(2013)11(c)-0032-07

The associated factor between rheumatoid arthritis, stroke and homocysteine

LI Yusheng1 Avinash Chandra1 YU Hui2 WANG Haili1 XU Yuming1

1.Department of Neurology, the First Affiliated Hospital of Zhengzhou University, He'nan Province, Zhengzhou 450052, China; 2.Department of Tumor Radiology, the First Affiliated Hospital of Zhengzhou University, He'nan Province, Zhengzhou 450052, China

[Abstract] Ever since increase in homocyseteine (HCY) level termed as hyperhomocysteinemia (HHCY) has been recognized as one of causal factors for an independent factor for the atherothromobosis and endovascular injury, it has become an element of great interest of research. HCY has close association (between HCY and different diseases) particularly in rheumatoid arthritis (RA) and in cardio and cerebro-vascular diseases. The capability of HCY to the vascular damage and structurally modifying specific proteins, resulting in formation of neo-antigens may also be a triggering factor of autoimmune reactions and thus HCY has probability to present itself as an initiating factor in autoimmune disease like RA. These all circumstances point towards potentially relevant role of HCY in the onset of specific autoimmune disease. HCY causes or plays a role in the progression of the associated cardiovascular and cerebrovascular damage through its inflammatory property. Immuno-inflammatory activation may contribute to the increase in HCY level which in turn may add up to the injury of the specific organ in specific diseases (like vessel injury in cardio and cerebrovascular disease, synovial tissue in RA). This bi-directional link appears to connect HCY and the auto-immune disease (immuno-inflammatory activation). In this review authors have tried to present the potential relation of HCY as a common linking factor between stroke and RA, through its bi-directional property. Through this current opinion authors have tried to put forth opinion that HCY is one of the common causal factors in strokeas as well as in RA. This carries an interesting clinical importance in control and prevention of these two diseases of different entity at a common point.

[Key words] Homocysteine; Inflammation; Autoimmune disease; Stroke; Rheumatoid arthritis

同型半胱氨酸是蛋白质代谢的中间产物,涉及到蛋氨酸向胱氨酸转化以及蛋氨酸再甲基化等过程。同型半胱氨酸是动脉粥样硬化性疾病的危险因素,许多研究证实了其对血管内皮细胞、血管平滑肌细胞、结缔组织、血浆脂蛋白、凝血因子以及血小板的不良影响。同型半胱氨酸水平升高的原因有很多种,最常见原因的是同型半胱氨酸代谢酶活性的降低。亚甲基四氢叶酸还原酶基因突变可引起同型半胱氨酸水平轻中度升高,存在于15%的脑血管疾病患者中[1-2]。其他不常见的引起高同型半胱氨酸血症的原因还包括杂合性胱硫醚b-合酶(CBS)缺乏。叶酸、维生素B12和(或)维生素B6缺乏也可以引起高同型半胱氨酸血症。一些药物,尤其是维生素拮抗剂如甲氨蝶呤以及抗癫痫药等也可引起高同型半胱氨酸血症。显著的同型半胱氨酸水平增高可见于慢性肾脏病、类风湿关节炎或甲状腺功能减退等疾病[3]。

因为同型半胱氨酸可能是引起卒中和类风湿关节炎的常见且重要的因素,此综述的目的即是清楚阐明同型半胱氨酸对于两者的作用。笔者认为同型半胱氨酸是引起卒中和类风湿关节炎的关联因素,可以对这一点进行干预从而防控这两种不同的疾病。

1 卒中和类风湿关节炎的自身免疫和炎性反应

类风湿关节炎是一种常见的慢性炎性关节疾病。改变病情抗风湿药(disease modifying antirheumatic drugs,DMARD)无法完全消除关节炎症,其病程也可能有不同。许多文献表明,类风湿关节炎和病死率升高相关[4-8]。类风湿关节炎被认为是一种自身免疫疾病[9-10]。自身免疫负荷以及全身和关节炎症介质导致了该病的破坏性病程[11]。类风湿关节炎患者中NF-κB水平上调,滑膜液中可激活NF-κB的细胞因子如TNF-α等的水平也增高[12-13]。细胞因子IL-6和IL-8也参与到了类风湿性关节炎的发病机制中。详尽的基础和临床研究发现,炎性反应也可以引起缺血性卒中。氧化应激和炎性反应在缺血性脑卒中的病理生理机制中起到了重要的作用。尽管缺血性卒中的发病机制多种多样,但越来越多的证据支持氧化应激和炎性反应这两大机制[14]。脑组织的抗氧化作用并不完善,因此炎症细胞释放的活性氧和其他的自由基/氧化剂威胁到了缺血灶附近组织的生存。关于急性缺血性卒中研究较多的与炎症相关的细胞因子有TNF-α、ILs、IL-1β、IL-6、IL-20、IL-10和TGF-β。IL-1β 和TNF-α能够加剧脑损伤,TGF-β和IL-10则被证实有神经保护作用[15-16]。促炎症细胞因子产生增多和抗炎因子IL-10水平的下降与大面积梗死和较差临床预后相关。各种细胞因子在病程中的不同作用更加支持了炎症在脑血管疾病中发挥了重要的作用。

2 同型半胱氨酸双向作用

同型半胱氨酸可能是自身免疫应答的启动因素,因而和血管疾病的发展和自身免疫性疾病的发生相关。不同研究者进行的许多不同的研究已经证实同型半胱氨酸的有趣作用。目前,不仅在类风湿性关节炎患者中,在其他自身免疫性疾病如多发性硬化患者中,血浆同型半胱氨酸的水平也增高,并且其增高与维生素缺乏无关[17],同型半胱氨酸可能是自身免疫和炎性反应进展中的始动因子,并且同型半胱氨酸的升高可能是自身免疫反应的结果,这些都是最近研究的热点。

3 免疫炎症激活与同型半胱氨酸增高的关联

同型半胱氨酸在炎症活化中的增强作用和在自身免疫反应中的激发机制,为其在加速动脉粥样硬化进展和自身免疫性疾病(如类风湿性关节炎)或脑血管疾病(如卒中)的发病机制中掀开了新的篇章。尽管同型半胱氨酸在免疫炎症活化中发挥的持久性的作用没有完全阐明,但该机制很可能是复杂和有趣的。同型半胱氨酸能够使IL-6、IL-8、单核巨噬细胞和内皮细胞产生的MCP-1、NO、MMP-9和血管平滑肌细胞产生的VCAM-1的产生增多[18-23]。因此,同型半胱氨酸在动脉粥样硬化的炎症过程中可能有更多的作用。炎性反应中的一些生物体液参数如不同细胞因子(IL-2sRα、sTNF-R75)中可溶性受体的循环水平[24-26]、黏附分子(sICAM-1)[26]、C反应蛋白[27-28]等都与同型半胱氨酸的浓度呈正相关。类风湿性关节炎患者中,同型半胱氨酸能够显著增加滑膜细胞产生IL-6和IL-8,尤其是在IL-1的共同作用下[29]。在慢性炎性关节疾病中,尤其是类风湿性关节炎,滑膜细胞主要参与到软骨损害过程中[30]。在IL-1诱导下,这些细胞主要通过产生细胞因子,如IL-6和IL-8,发挥致病性的作用[31-34]。事实上,IL-6和IL-8在类风湿性关节炎的发展过程中发挥了重要的作用,并且这两种细胞因子的表达水平与类风湿性关节炎的临床表现相关联[35-36]。Georganas等[37]的研究强有力地证实了在类风湿性关节炎患者的滑膜组织中NF-κB被组成性激活。这些证据支持了同型半胱氨酸通过活化NF-κB通路诱导滑膜细胞产生细胞因子以及类风湿性关节炎患者滑膜细胞中NF-κB的组成性激活可以解释同型半胱氨酸的特殊的敏感性的假设。动脉粥样硬化发生过程中炎性因子的表达与转录因子NF-κB的活化相关[38-40]。

升高的同型半胱氨酸可作为一种促炎和免疫刺激分子。同型半胱氨酸的促炎作用和免疫调节功能已经被一些包括分子光谱分析在内的体外血管细胞类型研究被证实。许多学者也证实了同型半胱氨酸能够诱导人类血管细胞和单核细胞产生的趋化因子(IL-8或MCP-1)、趋化因子受体的表达[41-43]。这些被体内研究的数据证实的结果表明了同型半胱氨酸在加强单核细胞趋化性进入血管壁的重要性。还有几种其他的同型半胱氨酸刺激效应依赖性的细胞因子和促炎分子,包括IL-1β[44]、IL-6[44-46]、IL-12[44]、IL-18[47]、IL-1ra [46]、ICAM-1[48]。同型半胱氨酸可能通过激活IKK激酶来上调ROS的产生,就像作为一种促炎症因子来激活NF-κB[49]。Lazzerini等[29]发现类风湿关节炎患者的关节中同型半胱氨酸起到促进炎症过程的作用,同时在风湿性关节炎患者滑膜液中约有10 μmol/L的同型半胱氨酸。他们的研究还揭示了同型半胱氨酸能通过激活NF-κB促进类风湿关节炎患者滑膜细胞细胞因子的分泌(增加了35%)[29]。总体上看,上面提及到的证据强有力的证明同型半胱氨酸能激活免疫系统同时促进炎症过程。也有研究证明高同型半胱氨酸血症时同型半胱氨酸的结构有所改变,从而使同型半胱氨酸进一步激活免疫系统,同时也证明同型半胱氨酸能改变HLA Ⅰ类抗原的一些位点,包括HLA-B27通过二硫键[50]。事实上证明,HLA-27Ⅰ类抗原结构和反应性关节炎的进展有密切关系。Chilvers等[51]做的另外一个研究表明,体外接受过同型半胱氨酸的进展性关节炎患者中CTL能溶解自体细胞,从侧面反映了同型半胱氨酸、HLA-B27结构的改变和自身免疫的致病机制。通过这种方式,在自身免疫疾病的发病中,同型半胱氨酸和免疫炎症的激活有双向关系,免疫炎症的激活可能增加同型半胱氨酸的产生,同时同型半胱氨酸在损害的特异性靶器官中可能扮演着一个促炎症和免疫激活分子,至少在类风湿关节炎患者中。同型半胱氨酸可能促进血管中的炎性反应过程从而导致脑血管病。

4 同型半胱氨酸和类风湿关节炎

高同型半胱氨酸血症与一些类风湿关节炎患者的临床特征[24]和更高的放射性损伤[28]有关系。在37例类风湿关节炎患者中,蛋氨酸过高时导致的同型半胱氨酸水平增高与ESR和CRP水平残疾评分、疼痛的程度以及肿胀和痛苦的关节数量有一定的关联[52]。在用大剂量糖皮质激素治疗类风湿关节炎患者中发现同型半胱氨酸快速降低约26%,同时在6个月后的随访中发现这种影响是持久的。这个发现提供了强有力的证据。在观察的患者中CRP的持续降低从另一个方面证明炎症和高同型半胱氨酸血症的关系,同时也支持炎症状态和高同型半胱氨酸血症的产生是有关联的。更能说明同型半胱氨酸在炎症中的作用,在强化激素治疗中,血浆中同型半胱氨酸浓度的下降和总体上炎症的减低是一致的[53]。虽然一些数据证明在类风湿关节炎患者中高同型半胱氨酸血症通过激活免疫系统增强或者加速维生素(叶酸,维生素B12、维生素B6)代谢,同时也可能在含硫氨基酸化代谢扮演重要作用[25,27,54-55]。

5 同型半胱氨酸和卒中

人们在1969年第一次认识到高同型半胱氨酸水平和动脉粥样硬化性疾病相关[56]。这一假说紧接着被一系列观察性研究所证明[57-59]。一项研究表明,高同型半胱氨酸血症是冠状动脉、脑血管和外周血管动脉粥样硬化的独立危险因素[57,60-61]。实验室研究也表明,高同型半胱氨酸血症在生化学上可能产生改变脑血管结构和功能[62]。虽然高同型半胱氨酸血症在动脉粥样硬化中扮演重要角色已经达成共识,但是并非所有研究均证实同型半胱氨酸水平升高和卒中相关[63-67]。

一系列观察性研究(队列研究和病例对照组)的系统评价表明,血清中同型半胱氨酸浓度水平和卒中的风险之间有强有力的、剂量相关的关系,同时也是其他血管病的独立危险因素[68-69]。另外一项关于同型半胱氨酸和卒中风险关系的研究表明,血清中同型半胱氨酸浓度每增加2.5 μmol/L,卒中的风险大约增加20%[68,70-71]。在分子水平上,在关于MTHFR基因多态性和卒中的关系荟萃分析中,Graeme等[72]发现,纯合子TT组较CC组相比平均总同型半胱氨酸更高,总血浆同型半胱氨酸加权平均差异1.93 μmmol/L,95%CI 1.38~2.47 μmmol/ L,且有着更高的卒中风险OR值为1.26,95% CI为1.14~1.40。

6 类风湿关节炎患者表现的心脑血管疾病易感性和高同型半胱氨酸血症的关系

6.1 心血管疾病和类风湿关节炎

一些研究证明,迅速发展的动脉粥样硬化通常出现在一些自身免疫性疾病的过程中,与心血管损害相关[73-77]。一项1999~2003年间对居住在英属哥伦比亚年龄大于18岁的人群进行的队列研究表明,类风湿关节炎是心血管疾病的危险因素,其相对危险度在年轻的及无心血管病史的类风湿关节炎患者中最高[78]。心血管死亡率和动脉粥样硬化严重程度之间的关系已经在之前的两项研究中被单独证实[79-80]。在类风湿关节炎中,炎症和类风湿因子的双重负担能加快动脉硬化的形成[76]。有研究进一步分别阐明了这种关系[81]。Meta分析的结果表明,类风湿性关节炎人群心梗和卒中的发生风险是上升的[82]。炎症细胞,比如巨噬细胞、单核细胞和T细胞,是类风湿性关节炎和动脉粥样硬化发展中常见且重要的原因。Zeyenep等[83]的综述清晰的解释了炎症细胞在动脉粥样硬化与心血管事件死亡率之间的这种联系[83]。

在一些自身免疫性疾病中动脉硬化性心血管病非常常见,其原因已经被证实与血脂异常、高同型半胱氨酸血症以及与治疗类风湿性关节炎的药物应用有关,比如环孢霉素能导致血脂异常,甲氨蝶呤能导致高同型半胱氨酸血症、类固醇[84-85]。

6.2 脑血管疾病和类风湿关节炎

有两项研究解释了类风湿性关节炎增加卒中患病风险的机制[75,78],炎症在血管损伤并最终发生卒中的过程中起了重要作用。动脉粥样硬化被认为是一种能产生全身急性反应的炎症疾病[86-88]。肿瘤坏死因子能激活内皮细胞,并促进凝血与血栓形成[89-92]。肿瘤坏死因子在卒中发生的所有阶段都扮演了一个重要角色,包括起始、进展,以及损伤修复和缺血耐受。

7 总结

高同型半胱氨酸血症见于炎症疾病和自身免疫性疾病中。最近,越来越多的研究表明,同型半胱氨酸是引起炎症和自身免疫的因素,卒中伴同型半胱氨酸升高更常见于类风湿性关节炎、狼疮这两种自身免疫性疾病。卒中患者的同型半胱氨酸水平是升高的。即使轻度的高同型半胱氨酸血症也可以促进卒中和动脉粥样硬化的发生。近来,同型半胱氨酸是卒中发生的危险因素的证据越来越多。炎症也同样被认为是卒中发生的危险因素,自身免疫是类风湿关节炎确定的危险因素,而同型半胱氨酸也起了重要作用。同型半胱氨酸的这种双向作用有着特殊的重要性。本研究的结论是,高同型半胱氨酸血症可能是卒中和类风湿关节炎的启动因素之一。同型半胱氨酸可引起自身免疫和炎症,并且可能导致类风湿性关节炎等自身免疫性疾病以及卒中。目前尚未有专门探讨同型半胱氨酸在类风湿关节炎与卒中联系的作用机制的研究。由于危险因素本身必须能够导致疾病的产生,而不是一个相关因素的间接反应,有必要展开一个更大样本的研究证明这个观点。为什么维生素强化治疗对于控制类风湿关节炎或者卒中没有效果?单纯的高同型半胱氨酸血症而不合并其他能导致类风湿性关节炎或者卒中的危险因素是否应该给与补充维生素治疗?虽然已经有了相关的文章仍然不能回答上面的问题。所以,需要进一步开展多中心的大样本队列研究与病例对照研究以回答这些问题以及其他尚不能回答的问题。同时也需要进行基础研究,从分子水平上检验卒中是类风湿性关节炎的危险因素这个理论,并且验证同型半胱氨酸是联系卒中与类风湿性关节炎的常见因素。

[参考文献]

[1] Kang SS,Passen EL,Ruggie N,et al. Thermolabile defect of meth ylenetetrahydrofolate reductase in coronary artery disease [J]. Circulation,1993,88(4):1463-1469.

[2] Kluijtmans LA,Van den Heuvel LP,Boers GH et al. Molecular genetic analysis in mild hyperhomocysteinemia:a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease[J]. Am J Hum Genet,1996,58:35-41.

[3] Ueland PM,Refsum H. Plasma homocysteine,a risk factor for vascular disease: plasma levels in health,disease,and drug therapy [J]. J Lab Clin Med,1989,114:473-501.

[4] Cobb S,Anderson F,Bauer W. et al. Length of life and cause of death in rheumatoid arthritis [J]. New Engl J Med,1953,249:553-556.

[5] Duthie JJR,Brown PE,Truelove LH,et al. Course and prognosis in rheumatoid arthritis[J]. Ann Rheum Dis,1964,23:193-202.

[6] Allebeck P. Increased mortality in rheumatoid arthritis [J]. Scand J Rheumatol,1982,11:81-86.

[7] Scott DL,Symmons DPM,Coulton BL,et al. Long-term outcome of treating rheumatoid arthritis:results after 20 years [J]. Lancet,1987,1:1108-1111.

[8] Wolfe F,Mitchell DM,Sibley JT,et al. The mortality of rheumatoid arthritis [J]. Arthritis Rheum,1994,37:481-494.

[9] Firestein GS. Evolving concepts of rheumatoid arthritis[J]. Nature,2003,423:356-361.

[10] Smolen JS,Aletaha D,Koeller M,et al. New therapies for the treatment of rheumatoid arthritis [J]. Lancet,2007,370:1861-1874.

[11] Rheumatoid Arthritis Classification Criteria. An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative [S]. 2010.

[12] Feldmann M,Brennan FM,Maini RN. Role of cytokines in rheumatoid arthritis [J]. Annu Rev,Immunol,1996,14:397-440.

[13] Roman-Blas JA,Jimenez SA. NFkappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis[J]. Osteoarthritis Cartilage,2006,14: 839-848.

[14] Muir KW,Tyrrell P,Sattar N,et al. Inflammation and ischaemic stroke[J]. Curr Opin Neurol,2007,20:334-342.

[15] Zhu Y,Yang GY,Ahlemeyer B,et al. Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage [J]. J Neurosci,2002,22:3898-3909.

[16] Spera PA,Ellison JA,Feuerstein GZ,et al. IL-10 reduces rat brain injury following focal stroke[J]. Neurosci Lett,1998, 251:189-192.

[17] Ramsaransing GS,Fokkema MR,Teelken A,et al. Plasma homocysteine levels in multiple sclerosi [J]. J Neurol Neurosurg Psychiatry,2006,77: 189-192.

[18] Desai A,Lankford HA,Warren JS. Homocysteine augments cytokine-induced chemokine expression in human vascular smooth cells: implications for atherogenesis [J]. Inflammation,2001,25:179-186.

[19] Van Aken BE,Jansen J,Van Deventer SJ,et al. Elevated levels of homocysteine increase IL-6 production in monocytic Mono Mac 6 cells [J]. Blood Coagul Fibrinolysis,2000,11:159-164.

[20] Ikeda U,Ikeda M,Minota S,et al. Homocysteine increase nitric oxide synthesis in cytokine-stimulated vascular smooth muscle cells [J]. Circulation,1999,99:1230-1235.

[21] Wang G,Siow YL. Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kappaB in THP- 1 macrophages[J]. Am J Physiol Heart Circ Physiol,2001,280: 2840-2847.

[22] Marion A,Hofmann,Evanthia L,et al. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model [J]. J Clin Invest,2001,107: 675-682.

[23] Yxfeldt A,Wallberg-Jonsson S,Hultdin J,et al. Homocysteine in patients with rheumatoid arthritis in relation to inflammation and B-vitamin treatment [J]. Scand J Rheumatol,2003, 32:205-210.

[24] Wallberg-Jonsson S,Cvetkovic JT,Sundqvist KG,et al. Activation of the immune system and inflammatory activity in relation to markers of atherothrombotic disease and atherosclerosis in rheumatoid arthritis [J]. J Rheumatol,2002,29:875-882.

[25] Schroecksnadel K,Frick B,Kaser S,et al. Moderate hypermocysteinemia and immune activation in patients with rheumatoid arthritis [J]. Clin Chim Acta,2003,338:157-164.

[26] Wallberg-Jonsson S,Cvetkovic JT,Sundqvist KG,et al. Activation of the immune system and inflammatory activity in relation to markers of atherothrombotic disease and atherosclerosis in rheumatoid arthritis [J]. J Rheumatol,2002,29:875-882.

[27] Schroecksnadel K,Frick B,Kaser S,et al. Moderate hypermocysteinemia and immune activation in patients with rheumatoid arthritis [J]. Clin Chim Acta,2003,338: 157-164.

[28] Lopez-Olivo MA,Gonzalez-Lopez L,Garcia-Gonzalez AI, et al. Factors associated with hyperhomocysteinemia in Mexican patients with rheumatoid arthritis [J]. Scand J Rheumatol,2006,35:112-116.

[29] Lazzerini PE,Selvi E,Lorenzini S,et al. Homocysteine enhances cytokine production in cultured synoviocytes from rheumatoid arthritis patients [J]. Clinical and Experimental Rheumatology,2006,24: 387-393.

[30] Pap T,Muller-Ladner U,Gay R,et al. Role for synovial fibroblasts in the pathogenesis of rheumatoid arthritis[J]. Arthritis Res,2000,2: 361-367.

[31] Guerne PE,Zurawbl,Vaughan JH,et al. Synovium as a source of interleukin 6 in vitro [J]. J Clin Invest,1989,23:585-592.

[32] Hayashid AK,Nanki T,Girschick H,et al. Synovial stromal cells from rheumatoid arthritis patients attract monocytes by producing MCP-1 and IL-8 [J]. Arthritis Res,2001,3:118-126.

[33] Agro A,Langdon C,Smith F,et al. Prostaglandin E2 enhances interleukin 8(IL-8)and IL-6 but inhibiths GM-CSF production by IL-1 stimulated human synovial fibroblasts in vitro [J]. J Rheumatol,1996,23:862-868.

[34] Jackson JR,Minton JA,HO ML,et al. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1 beta [J]. J Rheumatol,1997,24: 1253-1259.

[35] Robak T,Gladalska A,Stepien H,et al. Serum levels of interleukin-6 type cytokines and soluble interleukin-6 receptor in patients with rheumatoid arthritis [J]. Mediators Inflamm,1998,7: 347-353.

[36] Kraan MC,Patel DD,Haringman JJ,et al. The development of clinical signs of rheumatoid synovial inflammation is associated with increased synthesis of the chemokine CXCL8(interleukin-8)[J]. Arthritis Res,2001,3: 65-71.

[37] Georganas C,Liu H,Perlman H,et al. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblast:the dominant role for NF-kB but not C/EBPb or c-Jun[J]. J Immunol,2000,165:7199-7206.

[38] Baeuerle PA. IB-NF-B structures:at the interface of inflammation control [J]. Cell,1998,95:729-731.

[39] Karin M. The beginning of the end: IB kinase (IKK) and NF-B activation [J]. J Biol Chem,1999,274:27339-27342.

[40] Mercurio F,Zhu H,Murray BW,et al. IKK-1 and IKK-2:cytokine-activated I_B kinases essential for NF-κB activation[J]. Science,1997,278:860-866.

[41] Desai A,Lankford HA,Warren JS. Homocysteine augments cytokine-induced chemokine expression in human vascular smooth muscle cells: implications for atherogenesis[J]. Inflammation,2001,25:179-186.

[42] Wang GOK. Homocysteine stimulates the expression of monocyte chemoattractant protein-1 receptor (CCR2) in human monocytes:possible involvement of oxygen free radical[J]. Biochem J,2001,357:233-240.

[43] Holven KB,Aukrust P,Holm T,et al. Folic acid treatment reduces chemokine release from peripheral bloodmononuclear cell in hyperhomocysteinemic subjects [J]. Atheroscler Thromb Vasc Biol,2002,22:699-703.

[44] Su SJ,Huang LW,Pai LS,et al. Homocysteine at pathophysiological concentrations activates human monocyte and induces cytokine expression and inhibits macrophage migration inhibitory factor expression [J]. Nutrition,2005,21:994-1002.

[45] Holven KB,Aukrust P,Retterstol K,et al. Increased levels of C-reactive proteins and interleukin-6 in hyperhomocysteinemic subjects [J]. Scand J Clin Lab Invest,2006,66:45-54.

[46] Gori AM,Corsi AM,Fedi S,et al. A pro-inflammatory state is associated with hyperhomocysteinemia in the elderly [J]. Am J Clin Nutr,2005,82:335-341.

[47] Tso TK,Huang WN,Huang Hy,et al. Relationship of plasma interleukin-18 concentrations to traditional and nontraditional cardiovascular factors in patients with systemic lupus erythematosus [J]. Rheumatology,2006,45:1148-1153.

[48] Mansoor MA,Seljeflot I,Arnesen H,et al. Endothelial cell adhesion molecules in healthy adults during acute hyperhomocysteinemia and mild hypertriglyceridemia [J]. Clin Biochem,2004,37:408-414.

[49] Au-Yeung KKW,Woo CWO,Sung FL,et al. Hyperhomocysteinemia activates nuclear factor-kB in endothelial cells via oxidative stress [J]. Circ Res,2004,94:28-36.

[50] Gao XM,Wordsworth P,McMichael AJ,et al. Homocysteine modification of HLA antigens and its immunological consequences [J]. Eur J Immunol,1996,26:1443-1450.

[51] Chilvers MM,Wordsworth P,Stubbs A,et al. TCR usage by homocysteine-specific human CTL [J]. J Immunol,1998,160:3737-3742.

[52] Chiang EP,Bagley PJ,Selhub J,et al. Abnormal vitamin B6 status is associated with severity of symptoms in patients with rheumatoid arthritis [J]. Am J Med,2003,114:283-287.

[53] Lazzerini PE,Capecchi PL,Bisogno S,et al. Reduction in plasma homocysteine levels in patients with rheumatoid arthritis given pulsed glucocorticoid treatment[J]. Ann Rheum Dis,2003,62:694-695.

[54] Roubenoff R,Roubenoff,Selhub J,et al. Abnormal vitamin B6 status in rheumatoid cachexia:association with spontaneous tumor necrosis factor alpha production and markers of inflammation [J]. Arthritis Rheum,1995,38: 105-109.

[55] Mc Carty MF. Increased homocyst(e)ine associated with smoking,chronic inflammation,and aging may reflect acute-phase induction of pyridoxal phosphatase activity[J]. Med Hypoth,2000,55: 289-293.

[56] McCully KS. Vascular pathology of homocysteinemia:implications for the pathogenesis of arteriosclerosis[J]. Am J Pathol,1969,56:111-128.

[57] Kaul S,Zadeh AA,Shah PK. Homocysteine hypothesis for atherothrombotic cardiovascular disease [J]. J Am Coll Cardiol,2006,48:915-923.

[58] Wald DS,Wald NJ,Morris JK,et al. Folic acid,homocysteine,and cardiovascular disease: judging causality in the face of inconclusive trial evidence [J]. BMJ,2006,333:1215-1217.

[59] Pezzini A,Grassi M,Del Zotto E,et al. 2006 Interaction of homocysteine and conventional predisposing factors on risk of ischaemic stroke in young people: consistency in phenotype-diseaese analysis and genotype-disease analysis [J]. J Neurol Neurosurg Psychiatry,2006,77:1260-1266.

[60] Welch NG,Loscalzo J. Homocysteine and atherothrombosis [J]. N Engl J Med,1998,338:1042-1050.

[61] Spence JD,Bang H,Chambless LE,et al. Vitamin Intervention for stroke prevention trial. An efficacy analysis[J]. Stroke,2005,36:2404-2409.

[62] Faraci FM,Lentz SR. Hyperhomocysteinemia,oxidative stress,and cerebral vascular dysfunction [J]. Stroke,2004,35:345-347.

[63] Brattstrom L,Lindgren A,Israelsson B,et al. Hyperhomocysteinaemia in stroke: prevalence,cause,and relationships to type of stroke and stroke risk factors[J]. Eur J Clin Invest,1992,22:214-221.

[64] Coull BM,Malinow MR,Beamer N,et al. Elevated plasma homocyst(e)ine concentration as a possible independent risk factor for stroke [J]. Stroke,1990,21:572-576.

[65] Perry IJ,Refsum H,Morris RW,et al. Prospective study of serum total homocysteine concentration and risk of stroke in middleaged British men [J]. Lancet,1995,346:1395-1398.

[66] Verhoef P,Hennekens CH,Malinow MR,et al. A prospective study of plasma homocyst(e)ine and risk of ischemic stroke [J]. Stroke,1994,25: 1924-1930.

[67] Yoo JH,Chung CS,Kang SS. Relation of plasma homocyst(e)ine to cerebral infarction and cerebral atherosclerosis [J]. Stroke,1998,29:2478-2483.

[68] The Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke:a meta-analysis [J]. JAMA,2002,288: 2015-2022.

[69] Wald DS,Law M,Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis [J]. BMJ,2002,325: 1202-1206.

[70] Clarke R,Daly L,Robinson K. et al. Hyperhomocysteinemia [J]. N Engl J Med,1991,324:1149-1155.

[71] Brattstrom LE,Hardebo JE,Hultberg BL,et al. Moderate homocysteinemia—a possible risk factor for arteriosclerotic cerebrovascular disease [J]. Stroke,1984,15: 1012-1016.

[72] Graeme JH,John W. Eikelboom Comment-Homocystein and stroke [J]. Lancet,2005,132:127-139.

[73] Lentz SR. Mechanisms of homocysteine-induced atherothrombosis [J]. J Thromb Haemost,2005,3:1646-1654.

[74] Symmons DP,Jones MA,Scott DL,et al. Longterm mortality outcome in patients with rheumatoid arthritis:early presenters continue to do well [J]. J Rheumatol,1998,25:1072-1077.

[75] Solomon DH,Karlson EW,Rimm EB,et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis [J] Circulation,2003,107:1303-1307.

[76] Maradit-Kremers H,Nicola PJ,Crowson CS,et al. Cardiovascular death in rheumatoid arthritis:a population-based study[J]. Arthritis Rheum,2005,52:722-732.

[77] Goodson N,Marks J,Lunt M,et al. Cardiovascular admissions and mortality in an inception cohort of patients with rheumatoid arthritis with onset in the 1980s and 1990s [J]. Ann Rheum Dis,2005,64:1595-1601.

[78] Solomon DH,Goodson NJ,Katz JN,et al. Patterns of cardiovascular risk in rheumatoid arthritis[J]. Ann Rheum Dis,2006,65:1608-1612.

[79] Gonzalez-Juanatey C,Llorca J,Testa A,et al. Increased prevalence of severe subclinical atherosclerotic findings in long-term treated rheumatoid arthritis patients without clinically evident atherosclerotic disease[J]. Medicine(Baltimore),2003,82:407-413.

[80] Roman MJ,Devereux RB,Schwartz JE,et al. Arterial stiffness in chronic inflammatory diseases [J]. Hypertension,2005,46:194-199.

[81] Goodson NJ,Wiles NJ,Lunt M,et al. Mortality in early inflammatory polyarthritis: cardiovascular mortality is increased in seropositive patients[J]. Arthritis Rheum,2002,46:2010-2019.

[82] Christophe M,Emmanuel T,Ludovic T,et al. High risk of clinical cardiovascular events in rheumatoid arthritis: Levels of associations of myocardial infarction and stroke through a systematic review and meta-analysis [J]. Archives of Cardiovascular Disease,2010,103:253-261.

[83] Zeynep O,Cumali Ef,Mustafa C,et al. An update on the relationships between rheumatoid arthritis and atherosclerosis [J]. Atherosclerosis,2010,212:377-382.

[84] De Leeuw K,Kallenberg C,Bijl M. Accelerated atherosclerosis in patients with systemic autoimmune diseases [J]. Ann N YAcad Sci,2005,1051:362-371.

[85] Schroecksnadel K,Frick B,Wirleitner B,et al. Moderate hyperhomocysteinemia and immune activation [J]. Curr Pharm Biot echnol,2004,5:107-118.

[86] Ross R. Atherosclerosis: An inflammatory disease,New England Journal of Medicine [J]. 1999,340:115-126.

[87] Kuller LH,Tracy R,Shaten J,et al. Relation of C-reactive protein and coronary heart disease in the MRFIT nested control study [J]. AMJ Epidemiol,1996,144:533-547.

[88] Ricker PM,Cushman M,Stamfer MJ,et al. Inflammation,aspirin and the risk of cardiovascular disease in apparently healthy men [J]. New ENgl J Med,1997,336:973-979

[89] Hallenbeck JM. Inflammatory reactions at the blood-endothelial interface in acute stroke[J]. Adv Neurol,1996,71:281-297.

[90] Becker KJ. Targeting the central nervous system inflammatory response in ischemic stroke [J]. Curr Opin Neurol,2001,14:349-353.

[91] Del Zoppo GJ. TIAs and the pathology of cerebral ischemia [J]. Neurology,2004,62:15-19.

[92] Hansson GK. Inflammation,atherosclerosis,and coronary artery disease [J]. N Engl J Med,2005,352:1685-1695.

(收稿日期:2013-10-28 本文编辑:程 铭)

上一篇:舒芬太尼和芬太尼用于体外循环下冠状动脉旁路... 下一篇:Th1/Th2型细胞因子及免疫状态在支气管哮喘患儿...