基于卷积神经网络LeNet?5的货运列车车号识别研究

时间:2022-05-26 07:29:56

【前言】基于卷积神经网络LeNet?5的货运列车车号识别研究由文秘帮小编整理而成,但愿对你的学习工作带来帮助。0 引 言 目前货运列车车号识别系统[1?2]主要是基于RFID技术实现的,但是,由于该系统的准确性依赖于列车底部安装的RFID标签,而RFID标签容易损坏、丢失,因此,此类系统无法保证车号识别的准确性。为此,研究者开发了基于图像的货运列车车号识别系统,系统根据视频采...

基于卷积神经网络LeNet?5的货运列车车号识别研究

摘 要: 针对货运列车车号字符识别,提出了基于卷积神经网络lenet?5的改进识别方法,考虑到卷积神经网络的层次化以及局部领域等结构特点,对网络中各层特征图的数量及大小等参数进行相应的改进,形成了适用于货运车号识别的新网络模型。实验结果表明,该方法对车号的断裂、污损等问题的解决有较强的鲁棒性,达到了较高的识别率,为整个车号识别系统的精确性提供了保障。

关键词: 列车车号; 车号识别; 卷积神经网络; LeNet?5

中图分类号: TN911.73?34; TP391 文献标识码: A 文章编号: 1004?373X(2016)13?0063?04

Abstract: For the character recognition of freight train license, the improved recognition method based on convolutional neural network LeNet?5 is proposed. Considering the structural features of the hierarchical convolutional neural network and local field, the parameters of quantity and size of each layer feature pattern in the network were improved correspondingly to form the new network model suitable for the freight train license recognition. The experimental results show that the proposed method has strong robustness to solve the license breakage and stain, and high recognition rate, which provides a guarantee for the accuracy of the entire license recognition system.

Keywords: train license; license recognition; convolutional neural network; LeNet?5

0 引 言

目前货运列车车号识别系统[1?2]主要是基于RFID技术实现的,但是,由于该系统的准确性依赖于列车底部安装的RFID标签,而RFID标签容易损坏、丢失,因此,此类系统无法保证车号识别的准确性。为此,研究者开发了基于图像的货运列车车号识别系统,系统根据视频采集到的图像,利用模糊集合论[1?2]、人工神经网络[3]、支持向量机[4]以及隐马尔可夫模型[4]等技术进行车号字符的识别。但是,由于货运列车车号存在因喷涂方式而导致的单个字符断裂,或者列车长期的野外运行导致的车厢污损,车号字符的残缺等现象,这使得目前的基于图像的货运列车车号识别系统的鲁棒性与识别率还有待进一步提高。

LeNet?5[5?7]是由YannLecun等人提出的一种专门用于二维图像识别的卷积神经网络,该网络避免了人工提取特征依赖于主观意识的缺点,只需要将归一化大小的原始图像输入网络,该网络就可以直接从图像中识别视觉模式。LeNet?5把特征提取和识别结合起来,通过综合评价和学习,并在不断的反向传播过程中选择和优化这些特征,将特征提取变为一个自学习的过程,通过这种方法找到分类性能最优的特征。LeNet?5已经成功应用于银行对支票手写数字的识别中。

为此,本文将卷积神经网络LeNet?5应用于列车车号字符的识别中,为了使之适用于列车车号字符的识别需求,去除掉了LeNet?5中的一些针对手写字符识别而特别设计的连接方式及参数,并在此基础上,改变网络中各层特征图的数量以形成新的网络模型。

1 LeNet?5的改进

卷积神经网络可以从很多方面着手改进。诸如多层前馈网络,可以考虑在误差函数中增加惩罚项使得训练后得到趋向于稀疏化的权值,或者增加一些竞争机制使得在某个特定时刻网络中只有部分节点处在激活状态等。本文主要从卷积神经网络的层次化以及局部邻域等结构上的特点入手,考虑卷积神经网络中各层特征图数量及大小对网络训练过程及识别结果的影响。

以LeNet?5结构为基础,去除掉LeNet?5中的一些针对手写字符识别而特别设计的连接方式及参数,得到改进后的神经网络。在此基础上,改变网络中各层特征图的数量以形成新的网络模型。定义一种新的网络模型,将其命名为LeNet?5.1,该网络结构与LeNet?5基本相同,主要做出以下改变:

(1) 将原先LeNet?5所采用的激活函数由双曲正切函数修改为Sigmoid函数,此时,网络中所有层的输出值均在[0,1]区间内,输出层的最终结果也将保持在[0,1]区间内。

(2) 省略掉F6层,将输出层与C5层直接相连,连接方式为全连接,而不是原LeNet?5中所采用的径向基函数(RBF)网络结构。

(3) 简化原LeNet?5中的学习速率。原LeNet?5网络中采用的学习速率为一个特殊的序列,而在本网络中将学习速率固定为0.002。

(4) 输入数据原始尺寸为28×28,采取边框扩充背景像素的方法将图像扩充至32×32。

之所以做以上相关改动,是因为原始的LeNet?5就是专门为手写字符识别任务而特殊设计的,这就造成了LeNet?5网络中相关的预处理及参数的选择过程或多或少均带有一些针对特定问题的先验知识。例如激活函数中参数的选择,学习速率定的速率序列以及数据预处理殊的填充方式等,这些特定的设计使得LeNet?5在其他任务的识别过程中并不一定适用,或者需要进行长期的观察实验以选得一组针对特定任务的较好的值,造成了LeNet?5不能快速的应用于除手写字符外其他的识别任务中。

2 改进后的网络对列车车号字符的识别

车号经过分割之后为一个个的单字符图像,采用边框扩充背景像素的方法将其归一化为32×32,如图1所示。

由图1中可以看出,待识别的字符图像质量不高,有的数字字符出现残缺、断裂或者严重变形。这都给识别任务提出了一定的挑战。

本文采集到的车号图像来自于不同型号的货运列车。从中选取400幅图像作为训练集,另外选取400幅图像作为测试集。用上一节提出的LeNet?5.1网络进行训练,误分类率曲线如图2所示。可以看出,在LeNet?5.1训练过程中,训练MCR(Misclassification Rate)和测试MCR的变化过程相对稳定,验证了改进后网络结构的合理性。在经过16次的迭代之后,测试MCR降至最低(5.75%),之后基本保持稳定,即16次迭代之后,网络达到了当前的最佳训练效果,达到了收敛状态。这时,训练MCR为0.5%,测试MCR是5.75%。

训练过程中的误分类率曲线

而针对相同的数据,采用原始的LeNet?5进行训练和测试后,误分类率如图3所示。从图3中可以看出,LeNet?5经过了18次的迭代后,测试MCR才达到相对稳定的状态,降至6%,最终的训练MCR为1%。相比之下,经过简化和改进的LeNet?5.1,由于改进了原始的LeNet?5中专门为手写字符识别任务而特殊设计的一些预处理及函数选择等固定模式,并且精简了网络结构,使得LeNet?5.1在列车车号的识别方面具有了更快的训练速度和收敛速度,另外,最终达到的准确度也有所提升。

在证明了改进后的LeNet?5.1网络的合理性之后,增加训练图像的规模,采用10 000幅车号数字字符图像用来训练,5 000幅用来测试。为了与其他方法进行比较,采用相同的训练数据对车号识别中常用的三层BP网络进行训练和测试,这里采用的BP网络隐含层节点数量为450,学习速率采用0.01。实验结果比较如表1所示。从表1可以看出,改进后的LeNet?5.1网络的识别率比BP网络的识别率高出4.62个百分点,在识别速度方面,LeNet?5.1也明显优于传统的BP神经网络。

3 针对车型号字母识别而改进的神经网络及其结果

货运列车车号的组成是由车型号与车号共同组成的,因此还需要对车型号进行识别,车型号中除了有阿拉伯数字字符之外,还有很多表示车种及车厢材质等属性的英文字母,这些英文字母同样采用卷积神经网络来识别。由于车型号很多,初期针对若干常用型号的列车进行识别,以测试网络的性能,后期对全车型进行识别。

3.1 常用列车车型的识别

在试运行阶段主要识别的车型局限于7种主要的车型:C64K,C64H,C70A,C70E,C80,C62AK和C62BK。由于车种都为敞篷车(第一个大写字母C),主要对后面代表该车型载重量的两位数字以及最后代表车厢材质等属性的字母进行识别。考虑到车型号字符串的固定模式,如图4所示,可以分别建立两个不同的卷积神经网络分别用来识别数字和字母,由于之前已经解决了数字的识别问题,接下来主要进行字母的识别。要识别的代表车厢材质的字母共有6个:K,H,A,E,A和B,为了尽可能的避免因字母分割问题而导致的识别错误,把AK和BK分别作为一个整体来识别,那么需要识别的字符组合变为:K,H,A,E,AK和BK。由于识别种类的减少,可以对网络模型LeNet?5.1进行相应的简化,命名该模型为LeNet?5.2。

LeNet?5.2是在LeNet?5.1的基础上进行改动而得到的:

(1) 卷积层C1的特征图由6个减少为4个,相应地,S2层的特征图也由6个减少为4个。

(2) 卷积层C3的特征图由16个减少为11个,相应地,S4层的特征图也由16个减少为11个。

(3) 卷积层C5的特征图个数由120个减少为80个。

(4) 输出分类的数目由10个减少为6个。

另外,卷积层C3层与次抽样层S2层的连接情况如表2所示。

表2的连接方式采用与表1相同的思想,每一列都说明了C3层中的一个特征图是由S2中的那几个特征图结合而成。卷积层C3中第0个至第5个特征图分别与次抽样层S2中的两个特征图相连接,一共6种组合。C3中的这6个特征图负责抽取上一层中某两个特征图所潜在的特征。C3层中第6个至第9个特征图中每个特征图分别对应上一层中的3个特征图的组合,而C3层中最后一个特征图则与上一层中所有的特征图相连接。这样卷积层C3中的特征图就包含了次抽样层S2中多个特征图的所有组合,这样使得卷积层C3抽取到的特征比S2层更抽象、更高级,同时,相对于输入数据,C3层相比S2层具有更好的对位移、扭曲等特征的不变性。

相比LeNet?5.1,LeNet?5.2将网络层中的特征图数量做了相应的削减,减少了网络中可训练参数的数量。

实验数据来自以上提到的7类常用车型。经过前面过程的定位和分割之后,将分割之后代表车厢材质等属性的字母图像收集起来。本实验中,共收集到6种代表不同车厢材质属性的字母共800幅,其中400幅用作训练数据,另外400幅用作测试数据。

图5为LeNet?5.2使用以上数据训练过程中得到的MCR曲线图。由图5中可以看出,在经过13次迭代之后,测试MCR达到最低的3.25%,并且在随后的迭代过程中基本保持稳定,而对应的训练MCR为0.75%。

3.2 全车型识别

经过对铁道行业标准《铁路货车车种车型车号编码》(TB2435?93)里面包含的所有车型号进行统计,除了10个阿拉伯数字外,包括了除O,R,V,Z四个字母外所有的大写英文字母,总共有32类字符。

训练过程中的误分类率曲线

针对车型号的识别需求,本文在LeNet?5.1的基础上提出了一种新的网络模型,称之为LeNet?5.3。与LeNet?5.2相反,LeNet?5.3是在LeNet?5.1的基础上对网络中各层的特征图数量进行扩充:

(1) 卷积层C1的特征图由6个增加至8个,相应地,S2层的特征图也由6个增加至8个。

(2) 卷积层C3的特征图由16个增加至24个,相应地,S4层的特征图也由16个增加至24个。

(3) 卷积层C5的特征图个数由120个增加至240个。

(4) 输出层神经元的个数由10个增加至32个。

其中卷积层C3层与次抽样层S2层的连接情况参考LeNet?5.2所采用的原则,使卷积层C3中的特征图包含次抽样层S2中多个特征图的主要组合。

与LeNet?5.1相比,LeNet?5.3需要有更多的输出类别,各层的特征图数量也做了相应的增加,以增加整个网络的识别性能。为了验证改进后的LeNet?5.3的性能,收集了大量真实列车车厢图片,经过车号定位和分割之后,将单个的数字字符或者大写字母字符图像尺寸依次归一化为32×32,分别建立训练图像库和测试图像库。

由于LeNet?5.1各层的特征图数量多,因此该网络涉及到的可训练参数也大大增加,这也意味着需要更多的数据样本用于网络训练。若训练集和测试集规模依然采用跟前面实验中一样的各400幅,训练过程中的误分类率曲线如图6所示,图6中的曲线变化非常不稳定,波动较大。测试MCR达到最低点后又突然升高,不能获得稳定的分类结果,训练过程无法收敛。

网络训练过程中无法收敛的主要原因在于相比网络中过多的需要训练确定的权值,数据集规模过小,已然不能满足学习的要求。从特征图角度来看,网络无法通过不充足的训练样本学习到稳定而有效的特征图组合,从而导致了网络不收敛。要解决这个问题需要加大测试样本的数量。

为了训练和测试LeNet?5.3,对数据集进行了扩充:训练图像库包含字符图像4 000幅,测试图像库包含字符图像2 000幅。训练过程中的误分类率曲线如图7所示。从图7中可以看出,经过32次迭代之后网络趋于收敛,并且达到了较好的识别率。

4 结 语

本文针对货运列车车号识别的难题,提出了基于卷积神经网络LeNet?5改进后的识别方法,主要对卷积神经网络中各层特征图数量及大小进行了改进。且与传统的BP网络进行了比较,从实验结果可以看出,改进后的卷积神经网络无论在鲁棒性还是识别率以及识别速度上都优于BP网络,可以很好地胜任列车车号识别任务。

参考文献

[1] 宋敏.铁路车辆车号自动识别系统的研究和开发[D].天津:河北工业大学,2011:1?5.

[2] LU S, CHEN B M, KO C C. Perspective rectification of document images using fuzzy set and morphological operations [J]. Image and vision computing, 2005, 23(5): 541?553.

[3] SHAH P, KARAMCHANDANI S, NADKAR T, et al. OCR?based chassis?number recognition using artificial neural networks [C]// Proceedings of 2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES). [S.l.]: IEEE, 2009: 31?34.

[4] CHEN D, BOURLARD H, THIRAN J P. Text identification in complex background using SVM [C]// Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2001: 621?626.

[5] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient?based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278?2324.

[6] LECUN Y A, BOTTOU L, ORR G B, et al. Efficient backprop [M]// Anon. Neural networks: tricks of the trade. Berlin: Springer Berlin Heidelberg, 1998: 9?50.

[7] SIMARD P, STEINKRAUS D, PLATT J C. Best practices for convolutional neural networks applied to visual document analysis [C]// Proceedings of 2003 7th International Conference on Document Analysis and Recognition. [S.l.]: IEEE, 2003: 958?962.

[8] KORNAI A. An experimental HMM?based postal OCR system [C]// Proceedings of 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing. US: IEEE, 1997, 4: 3177?3180.

上一篇:内燃直线发电系统双向功率变换器研究与设计 下一篇:提升大专院校音乐教师教学能力的策略研究