某市餐厨垃圾处理项目厌氧消化产气影响关键参数的中试实践

时间:2022-05-01 09:11:41

某市餐厨垃圾处理项目厌氧消化产气影响关键参数的中试实践

摘要:目前国内餐厨垃圾采用厌氧消化处理工艺的项目越来越多,本文结合某市餐厨垃圾处理中试工程,对餐厨垃圾厌氧消化处理过程中对产气量有影响的停留时间、氨氮、温度等关键参数不同工况进行工程实践,通过调整设定参数,最后确定厌氧反应器的最佳运行参数,为实际工程做参考。

关键词: 餐厨垃圾 厌氧消化 停留时间 温度 氨氮

1. 前言

1.1餐厨垃圾处理现状

餐厨垃圾是餐饮垃圾和厨余垃圾的统称。其中,餐饮垃圾指餐馆、饭店、单位食堂等的饮食剩余物以及后厨的果蔬、肉食、油脂、面点等的加工过程废弃物;厨余垃圾指家庭日常生活中丢弃的果蔬及食物下脚料、剩饭剩菜、瓜果皮等易腐有机垃圾。

餐厨垃圾是城市生活垃圾的主要组成部分,在城市垃圾中所占比例北京37% ,天津54% ,上海59%,沈阳62%,深圳57%,广州57%,济南41%。[1]

早期餐厨垃圾主要作为近郊养猪饲料,由于其来源比较复杂,极有可能引起疾病传播,现已被政府命令禁止。另外,餐厨垃圾也不宜与其他生活垃圾混合处置:由于餐厨垃圾含水率和有机物含量较高,若直接填埋极易在较短的时间内腐烂发臭和滋生蚊蝇,对垃圾填埋作业和渗沥液收集都会产生较大影响;且由于餐厨垃圾含水率较高,低位热值仅为2100-3100KJ/kg左右,不能满足焚烧发电厂进料热值要求(5000KJ/kg以上)[2]。因此,对餐厨垃圾的处理迫在眉睫。

目前,全国各地均开始兴建餐厨垃圾处理厂,处理技术主要有:高温消毒制饲料、好氧发酵制肥、厌氧消化等[3],根据国内工程实例来看,高温消毒制饲料技术的产品存在同源患,且存在菌种管理问题;好氧发酵制肥堆肥技术存在占地较大、臭气较难控制、产品销路不畅等缺点。而相比于以上两种,厌氧消化技术在高浓度污水处理方面应用已经较为成熟,其主要产品――沼气为优质清洁能源,副产物(沼液、沼渣)经处理后可达标排放,近些年在国内逐渐成为餐厨垃圾处理技术的发展趋势,重庆、宁波、兰州、苏州等地均采用厌氧消化工艺作为餐厨垃圾处理的主体工艺。

1.2厌氧消化基本原理

餐厨厌氧消化处理是指在无分子氧条件下通过厌氧微生物和兼氧微生物的作用,将餐厨垃圾中的各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程。

厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌、产氢产乙酸细菌和产甲烷细菌的联合作用完成。因而粗略地将厌氧消化过程划分为三个连续的阶段,即水解酸化阶段、产氢产乙酸阶段和产甲烷阶段。第一阶段为水解酸化阶段。在该过程中复杂的大分子、不溶性有机物先在细胞外酶的作用下水解为小分子和溶解性有机物,然后渗入细胞体内,分解产生挥发性有机酸、醇类、醛类等。这个阶段主要产生较高级脂肪酸。第二阶段为产氢产乙酸阶段。该过程中在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2,在降解奇数碳素有机酸时还形成CO2。第三阶段为产甲烷阶段。此阶段主要依靠产甲烷细菌的作用,将乙酸、乙酸盐、CO2和H2等转化为甲烷。此过程由两组生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3后者约占2/3。

虽然厌氧消化过程可分为以上三个阶段,但是在厌氧反应器中,三个阶段是同时进行的,并保持某种程度的动态平衡,这种动态平衡一旦被pH值、温度、有机负荷等外加因素所破坏,则首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,甚至会导致整个厌氧消化过程停滞。

影响厌氧反应的因素有很多,包括:温度、pH、有机负荷、有毒有害物质含量、营养物质含量等。根据实际经验,餐厨垃圾中基本无有毒有害物质,且其中营养物质含量较高,不需要投加营养元素。

而在餐厨垃圾资源化利用和无害化处理的工程实践中,沼气的产量是资源利用程度和有机物质降解是否充分的最直观的指标。因此结合某市餐厨垃圾处理项目前期的中试研究,选择停留时间、氨氮浓度值和温度三个具备可操作性的控制性参数进行沼气量的产量变化观察,从而为某市后续大规模设计参数提供参考和依据。

2. 工程实践应用

2.1工艺流程简介

某市餐厨垃圾处理中试项目,处理规模为20t/d,餐厨垃圾处理的工艺流程如图1所示:

如上图所示,餐厨垃圾先经过分 拣、磁选、破碎、固液分离制浆等工序预处理后,与油水分离后的渗沥液一起进入厌氧消化反应器进行厌氧消化反应,厌氧消化产生的沼气经脱硫、除水净化后进入沼气锅炉燃烧产生蒸汽,产生的蒸汽一部分用于油水分离系统增温,一部分用于厌氧消化系统增温,厌氧消化系统产生的沼液经污水处理系统处理后达标排放。油脂经净化后作为毛油外售。

本工艺核心环节为厌氧消化。根据厌氧消化温度的不同,目前国内常见的厌氧消化工艺可分为高温厌氧消化(50-60℃)和中温厌氧消化(25-40℃)。相比于高温厌氧消化,中温厌氧消化具有运行稳定、能耗较低等优点,且国内中温厌氧消化工程案例较多,因此本工程选用中温厌氧消化工艺。

2.2进水水质

根据取样检测,进入厌氧消化反应器的进料浆液水质如下表所示:

注:试验过程中,温度下降到20℃时间需要1h左右,而从20℃加热回升到35℃需要30 min左右.

图6 沼气产生量随时间变化图

如上图所示,降温持续时间不同,相对产气量的变化也不同,当温度降至20℃持续时间1h时,相对产气量骤降至2.82%,温度恢复后,相对产气量随温度很快恢复至波动前的水平;当持续时间为2h时,相对产气量最低降至0,而温度恢复后,相对产气量要经过4.5-5h才慢慢恢复,且比波动前略低。

从实验结果中可看出,随着温度突然降低,沼气产生量急剧下降甚至停止产气。虽然温度不会使厌氧消化系统产生不可逆转的破坏,但随着降温时间的延长,产气恢复时间也越长。因此在实际工程中应尽量避免温度骤降问题。主要方法有:增设备用锅炉和增加备用汽水混合旁路以避免因能源供应系统故障而造成的反应器温度骤降。

4 结论

(1)根据中试实践,确定厌氧反应器的最佳运行条件为:厌氧反应器最佳停留时间为35d,停留时间过长,产气贡献不大却会造成反应器过大投资增加,停留时间过短,产气不充分,有机物降解不完全。

(2)根据中试实践,厌氧反应器内最佳温度35℃,温度的变化范围应控制在33.5-36.5℃为宜;温度的骤然变化对产气效果影响较大,因此在实际工程中,应采取增设备用锅炉系统和备用汽水混合旁路,以保证能源稳定供应。

(3)根据中试实践,氨氮对产气效果影响较大,在实际工程中,应密切关注反应器内氨氮的变化,抑制氨氮浓度的增加。可采用利用出水稀释氨氮浓度和进料缩短垃圾收运时间等方式来尽量减少氨氮对产气效果的影响。

参考文献

[1] 王向会, 李广魏, 孟虹, 等. 国内外餐厨垃圾处理[J]. 环境卫生工程, 2005, 13(2).

[2] 耿土锁( 食物性有机垃圾资源化方法[J]. 贵州环保科技,2002(12):15-18

[3] 熊婷, 霍文冕, 窦立宝, 等. 城市餐厨垃圾资源化处理必要性研究[J]. 环境科学与管理, 2010, 35(2).

[4] Cheng J,Liu B. Swine wastewater treatment in anaerobic digesters with floating medium[J]. Transactions of the American Society of Agriculture and Biological Engineers, 2002,45(3);799-805.

上一篇:工程总承包企业应收账款管理对策 下一篇:基于建筑工程施工的后浇带施工技术实践初论