氢能源及其利用

时间:2022-04-30 11:14:31

氢能源及其利用

【摘 要】本文首先对氢能源进行了简要介绍,主要介绍了其优势和特点。然后介绍了几种常用的氢能制备技术,接着说明了氢能的储存与输运方式。最后介绍了目前氢能的应用,重点阐述了氢气在燃气轮机中的应用。

【关键词】氢能源;制备;储存;输运;应用

0.引言

氢具有高挥发性、高能量,是能源载体和燃料,同时氢在工业生产中也有广泛应用。现在工业每年用氢量为5500亿立方米,氢气与其它物质一起用来制造氨水和化肥,同时也应用到汽油精炼工艺、玻璃磨光、黄金焊接、气象气球探测及食品工业中。液态氢可以作为火箭燃料,因为氢的液化温度在-253℃。

氢能被提上人类未来能源的议程是大势所趋。众所周知,当今世界,为了解决能源短缺、环境污染日益严重和经济持续发展等问题,洁净的新能源和可再生能源的开发已是迫在眉睫。对我国来说,交通运输的能耗所占比重愈来愈大,与此同时,汽车尾气污染已经成为大气污染特别是城市大气污染的最重要因素。

1.氢能的优势和特点

1.1 氢能的优势

氢能作为一种清洁的新型能源,具有以下优势:(1)燃烧放出的热量多;(2)燃烧产物是水,不污染环境;(3)制备的原料是水,资源不受限制。

由于具有上述优点,而且目前电能存在着难以储存、远程输运时损耗大的缺点,故在未来能源体系中,氢能将成为各种能量形式之间转化的最优良载体。

1.2 氢能的特点

作为能源,氢能具有无可比拟的潜在开发价值:

(1)安全环保:氢气分子量为2, 比空气轻1/14, 因此,氢气泄漏于空气中会自动逃离地面,不会形成聚集。而其他燃油燃气均会聚集地面而构成易燃易爆危险。无味无毒,不会造成人体中毒,燃烧产物仅为水,不污染环境。

(2)高温高能:1kg氢气的热值为34000Kcal, 是汽油的三倍。氢氧焰温度高达2800度,高于常规液气。

(3)热能集中:氢氧焰火焰挺直,热损失小,利用效率高。

(4)自动再生:氢能来源于水,燃烧后又还原成水。

(5)催化特性: 氢气是活性气体催化剂,可以与空气混合方式加入催化燃烧所有固体,液体、气体燃料。加速反应过程,促进完全燃烧,达到提高焰温、节能减排之功效。

(6)还原特性:各种原料加氢精炼。

(7)变温特性:可根据加热物体的熔点实现焰温的调节。

(8)来源广泛:氢气可由水电解制取,水取之不尽,而且每kg水可制备1860升氢氧燃气。

(9)即产即用:利用先进的自动控制技术,由氢氧机按照用户设定的按需供气,不贮存气体。

(10)应用范围广:适合于一切需要燃气的地方。

2.氢能的制备

2.1从含烃的化石燃料中制氢

这是过去以及现在采用最多的方法,它是以煤、石油或天然气等化石燃料作原料来制取氢气 。自从天然气大规模开采后,传统制氢的工业中有96%都是以天然气为原料,天然气和煤都是宝贵的燃料和化工原料,其储量有限,且制氢过程会对环境造成污染,用它们来制氢显然摆脱不了人们对常规能源的依赖和对自然环境的破坏。

2.2电解水制氢

这种方法是基于氢氧可逆反应分解水来实现的。为了提高制氢效率,电解通常在高压下进行,采用的压力多为3.0~5.0MPa。目前电解效率为50%~70%。由于电解水的效率不高且需消耗大量的电能,因此利用常规能源生产的电能来进行大规模的电解水制氢显然是不合算的。

2.3生物制氢

生物制氢以生物活性酶为催化剂,利用含氢有机物和水将生物能和太阳能转化为高能量密度的氢气 。与传统制氢工业相比,生物制氢技术的优越性体现在:所使用的原料极为广泛且成本低廉,完全脱离了常规的化石燃料,可实现零排放。发展生物制氢技术符合国家对环保和能源发展的中、长期政策,前景光明。

3.氢的储存与输运

氢能的储存与输运是氢能应用的前提。但氢气无论以气态还是液态形式存在,密度都非常低,气态时为0.08988g·L-1(约为空气的7%),液态(-253℃)时为70.8g·L-1(约为水的7%)。

总体说来,氢气储存可分为物理法和化学法两大类。物理储存方法主要包括液氢储存、高压氢气储存、活性炭吸附储存、碳纤维和碳纳米管储存、玻璃微球储存、地下岩洞储存等。化学储存方法有金属氢化物储存、有机液态氢化物储存、无机物储存、铁磁性材料储存等。

氢气的输运与氢气储存技术的发展息息相关,目前氢气的运输方式主要包括压缩氢气和液氢两种,金属氢化物储氢、配位氢化物储氢等技术尚有待成熟。

3.1金属氢化物储氢

把氢以金属氢化物的形式储存在合金中,是近30年来新发展的技术。原则上说,这类合金大都属于金属间化合物,制备方法一直沿用制造普通合金的技术。这类技术有一种特性,当把它们在一定温度和压力下曝置在氢气氛中时,就可以吸收大量的氢气,生成金属氢化物。生成的金属氢化物加热后释放出氢气,利用这一特性就可以有效地储氢。

金属氢化物储氢比液氢和高压氢安全,并且有很高的储存容量。但由于成本问题,金属氢化物储氢仅适用于少量气体储存。

3.2氢的输运

运输液态氢气最大的优点是能量密度高(1辆拖车运载的液氢相当于20辆拖车运输的压缩氢气),适合于远距离运输(在不适合铺设管道的情况下)。若氢气产量达到450kgh-1、储存时间为1天、运输距离超过160km,则采用液氢的方式运输成本最低,金属氢化物运输方式也很有竞争力。但运输距离若达到1,600km,液氢运输的成本可比金属氢化物低4倍,比压缩氢气低7倍。

4.氢能的应用

氢能主要在以下几个方面得到了比较广泛的应用:(1)氢气燃烧放热(如液态氢作为火箭燃料);(2)用高压氢气,氧气制作氢氧燃料电池;(3)利用氢的热核反应释放的核能(氢弹)。下面重点介绍氢气在燃气轮机中的应用。

由于空气质量不断下降,各国均认识到必需降低COx、NOx、烟尘等污染物的排放量。在现代社会中,很大一部分能源通过火力发电、被转化成电能,因此发电厂是最大的污染源之一,必须对发电设备加以必要的改进。

出于降低NOx排放量的目的,目前氢主要是以富氢燃气(富氢天然气或合成气)的形式应用于燃气轮机发电系统,关于纯氢作为燃料气的报道很少。

5.小结

氢能作为一种洁净的可再生能源,同时又具有可储可输的特点,从长远上看,它的发展可能带来能源结构的重大改变,而在目前它是一种理想的低污染或零污染的车用能源,国际上公认在不远的将来氢燃料汽车将是解决城市大气污染的最重要途径之一。因此,氢能作为解决当前人类所面临困境的新能源,具有广阔的应用前景。 [科]

【参考文献】

[1]任南琪.生物制氢技术的研究与发展[J].能源工程,2001,(2):18~20.

[2]刘江华,方新湘,周华.我国氢能源开发与生物制氢研究现状[J].新疆农业科学,2004,41:85~87.

[3]顾年华等.2l世纪我国新能源开发展望[J].中国能源,2002,(1):25~28.

[4]陈进富.基于汽车氢燃料的有机液体氢化物储氢新技术研究[M].北京:石油大学出版社,1997:78~79.

上一篇:提高技校计算机课教学效果的几点建议 下一篇:强化高校思想政治教育实效性方法研究