岩土工程研究领域问题综述

时间:2022-04-20 06:10:06

岩土工程研究领域问题综述

【摘要】:本文根据岩土工程学科特点对岩土工程发展的要求、趋势、影响进行综合分析,指出重视的研究领域,同时展望岩土工程的发展前景。

【关键词】:岩土工程 领域 问题 分析 综述

一、岩土工程测试技术

岩土工程测试技术一般分为室内试验技术、原位试验技术和现场监测技术等几个方面。在原位测试方面,地基中的位移场、应力场测试,地下结构表面的土压力测试,地基土的强度特性及变形特性测试等方面将会成为研究的重点,随着总体测试技术的进步,这些传统的难点将会取得突破性进展。虚拟测试技术将会在岩土工程测试技术中得到较广泛的应用。及时有效地利用其他学科科学技术的成果,将对推动岩土工程领域的测试技术发展起到越来越重要的作用,如电子计算机技术、电子测量技术、光学测试技术、航测技术、电、磁场测试技术、声波测试技术、遥感测试技术等方面的新的进展都有可能在岩土工程测试方面找到应用的结合点。测试结果的可靠性、可重复性方面将会得到很大的提高。由于整体科技水平的提高,测试模式的改进及测试仪器精度的改善,最终将导致岩土工程方面测试结果在可信度方面的大大改进。

二、地基与建(构)筑物不同介质相互作用分析

当天然地基不能满足建(构)筑物对地基要求时,需要对天然地基进行处理形成人工地基。桩基础、复合地基和均质人工地基是常遇到的三种人工地基形式。研究桩体与土体、复合地基中增强体与土体之间的相互作用,对了解桩基础和复合地基的承载力和变形特性是非常有意义的。

地基与建(构)筑物相互作用与共同分析已引起人们重视并取得一些成果,但将共同作用分析普遍应用于工程设计,其差距还很大。大部分的工程设计中,地基与建筑物还是分开设计计算的。进一步开展地基与建(构)筑物共同作用分析有助于对真实工程性状的深入认识,提高工程设计水平。现代计算技术和计算机的发展为地基与建(构)筑物共同作用分析提供了良好的条件。目前迫切需要解决各类工程材料以及相互作用界面的实用本构模型,特别是界面间相互作用的合理模拟。

三、岩土工程计算机分析

虽然岩土工程计算机分析在大多数情况下只能给出定性分析结果,但岩土工程计算机分析对工程师决策是非常有意义的。开展岩土工程问题计算机分析研究是一个重要的研究方向。岩土工程问题计算机分析范围和领域很广,随着计算机技术的发展,计算分析领域还在不断扩大。除前面已经谈到的本构模型和不同介质间相互作用和共同分析外,还包括各种数值计算方法,土坡稳定分析,极限数值方法和概率数值方法,专家系统、AutoCAD技术和计算机仿真技术在岩土工程中应用,以及岩土工程反分析等方面。岩土工程计算机分析还包括动力分析,特别是抗震分析。岩土工程计算机数值分析方法除常用的有限元法和有限差分法外,离散单元法(DEM)、拉格朗日元法(FLAC),不连续变形分析方法(DDA),流形元法(MEM)和半解析元法(SAEM)等也在岩土工程分析中得到应用。

四、岩土工程可靠度分析

在建筑结构设计中我国已采用以概率理论为基础并通过分项系数表达的极限状态设计方法。地基基础设计与上部结构设计在这一点尚未统一。应用概率理论为基础的极限状态设计方法是方向。由于岩土工程的特殊性,岩土工程应用概率极限状态设计在技术上还有许多有待解决的问题。目前要根据岩土工程特点积极开展岩土工程问题可靠度分析理论研究,使上部结构和地基基础设计方法尽早统一起来。

五、环境岩土工程分析

环境岩土工程是岩土工程与环境科学密切结合的一门新学科。它主要应用岩土工程的观点、技术和方法为治理和保护环境服务。人类生产活动和工程活动造成许多环境公害,如采矿造成采空区坍塌,过量抽取地下水引起区域性地面沉降,工业垃圾、城市生活垃圾及其它废弃物,特别有毒有害废弃物污染环境,施工扰动对周围环境的影响等等。另外,地震、洪水、风沙、泥石流、滑坡、地裂缝、隐伏岩溶引起地面塌陷等灾害对环境造成破坏。

六、沉降控制与设计理论

建(构)筑物地基一般要同时满足承载力的要求和小于某一变形沉降量(包括小于某一沉降差)的要求。有时承载力满足要求后,其变形和沉降是否满足要求基本上可以不验算。这里有二种情况:一种是承载力满足后,沉降肯定很小,可以不进行验算,例如端承桩桩基础;另一种是对变形没有严格要求,例如一般路堤地基和砂石料等松散原料堆场地基等。也有沉降量满足要求后,承载力肯定满足要求而可以不进行验算。在这种情况下可只按沉降量控制设计。

按沉降控制设计不是可以不管地基承载力是否满足要求,在任何情况下都要满足承载力要求。按沉降控制设计理论本身也包含对承载力是否满足要求进行验算。

七、基坑工程围护体系

基坑工程围护体系稳定和变形研究包括下述方面:土压力计算、围护体系的合理型式及适用范围、围护结构的设计及优化、基坑工程的“时空效应”、围护结构的变形,以及基坑开挖对周围环境的影响等等。基坑工程涉及土体稳定、变形和渗流三个基本问题,并要考虑土与结构的共同作用,是一个综合性课题,也是一个系统工程。

基坑工程区域性、个性很强。有的基坑工程土压力引起围护结构的稳定性是主要矛盾,有的土中渗流引起流土破坏是主要矛盾,有的控制基坑周围地面变形量是主要矛盾。目前土压力理论还很不完善,静止土压力按经验确定或按半经验公式计算,主动土压力和被动土压力按库伦(1776)土压力理论或朗肯(1857)土压力理论计算,这些都出现在Terzaghi有效应力原理问世之前。在考虑地下水对土压力的影响时,是采用水土压力分算,还是采用水土压力合算较为符合实际情况,在学术界和工程界认识还不一致。

八、复合地基

复合地基、浅基础和桩基础是目前常见的三种地基基础形式。浅基础、复合地基和桩基础之间没有非常严格的界限。桩土应力比接近于1.0的土桩复合地基可以认为是浅基础,考虑桩同作用的摩擦桩基也可认为是刚性桩复合地基。将其视为刚性桩复合地基更利于对其荷载传递体系的认识。浅基础和桩基础的承载力和沉降计算有比较成熟的理论和工程实践的积累,而复合地基承载力和沉降计算理论有待进一步发展。目前复合地基计算理论远落后于复合地基实践。应加强复合地基理论的研究,如各类复合地基承载力和沉降计算,特别是沉降计算理论;复合地基优化设计;复合地基的抗震性状;复合地基可靠度分析等。另外各种复合土体的性状也有待进一步认识。加强复合地基理论研究的同时,还要加强复合地基新技术的开发和复合地基技术应用研究。

九、周期荷载及动力荷载作用下地基性状

在周期荷载或动力荷载作用下,岩土材料的强度和变形特性,与在静荷载作用下的有许多特殊的性状。动荷载类型不同,土体的强度和变形性状也不相同。在不同类型动荷载作用下,它们共同的特点是都要考虑加荷速率和加荷次数等的影响。近二三十年来,土的动力荷载作用下的剪切变形特性和土的动力性质(包括变形特性和动强度)的研究已得到广泛开展。随着高速公路、高速铁路以及海洋工程的发展,需要了解周期荷载以及动力荷载作用下地基土体的性状和对周围环境的影响。与一般动力机器基础的动荷载有所不同,高速公路、高速铁路以及海洋工程中其外部动荷载是运动的,同时自身又产生振动,地基土体的受力状况将更复杂,土体的强度、变形特性以及土体的蠕变特性需要进一步深入的研究,以满足工程建设的需要。交通荷载的周期较长,交通荷载自身振动频率也低,荷载产生的振动波的波长较长,波传播较远,影响范围较大。高速公路、高速铁路以及海洋工程中的地基动力响应计算较为复杂,研究交通荷载作用下地基动力响应计算方法,从而可进一步研究交通荷载引起的荷载自身振动和周围环境的振动,对实际工程具有广泛的应用前景。

十、特殊岩土工程问题

展望岩土工程的发展,还要重视特殊岩土工程问题的研究,如:库区水位上升引起周围山体边坡稳定问题;越江越海地下隧道中岩土工程问题;超高层建筑的超深基础工程问题;特大桥、跨海大桥超深基础工程问题;大规模地表和地下工程开挖引起岩土体卸荷变形破坏问题等。

上一篇:锅炉安装的质量控制 下一篇:小议民用住宅工程施工中的防水质量通病问题