GSM移动通信基站后向场电磁辐射污染研究

时间:2022-03-25 05:37:50

GSM移动通信基站后向场电磁辐射污染研究

摘要:针对居住在移动基站附近的居民日益关注电磁辐射污染问题,对四川省7个GSM移动通信基站扇区后向场电场强度及功率密度进行了测定。结果表明,后向场功率密度值随着测试点位与天线的距离增大而减小,0.3m处最大;监测角度为主射方向正后方(30°~150°)时功率密度值最小,监测角度为主射方向垂直方向(0°和180°)时功率密度值最大。后向场1m处电磁辐射不会对人体健康造成伤害。

关键词:移动基站、后向场、电磁辐射、功率密度

The Study of Electromagnetic Radiation Pollution for GSM Mobile Communication Base Stations of the Opposing Field

YOU Jing1, ZHONG Guijiang2, ZHAO Yunfei1

1. Chengdu solid waste sanitary disposal site,Chengdu 610108

2.Center for Tests and Analyses,Nuclear Geology Bureau of Sichuan Province,Chengdu 610021

Abstract: Growing concern for residents living in the vicinity of the mobile base station electro -magnetic radiation pollution problems, In sichuan Province, power density were studied of seven GSM mobile base sector opposing Field, from 9:00 to 13:20 and from 15:00 to 23:00 the two communication peak time monitoring and analysis of the normal working days of mobile base stations around the electric field strength and power density with distance and angle comparison to the field of power variation, as well as different types of base stations. The results show that the power density value decreases with increasing distance from the antenna to test point, peak value at the 0.3m. when Monitoring Angle at the opposed transmitting directing (30 ° ~ 150 °) power density value is lower than other Angle, when Monitoring Angle at the vertical of the transmitting directing(0 ° and 180 °), the power density values is the larges. Electromagnetic radiation will not cause damage to human health at the distance from the antenna to test point is 1.0 m

Key words: Mobile base station、Opposing Field、Electromagnetic radiation、Power density

中图分类号:O434.11文献标识码: A 文章编号:

我国移动电话的普及和移动电话网的建设与发展,给人们的工作和生活带来了极大的便利,其社会效益和经济效益也十分可观的,同时促进了经济的发展和社会的进步。为提高移动通讯的通话质量和话务容量,城市中移动基站的分布越来越密集,移动基站所带来的电磁辐射污染影响日益受到重视[1-3],通信公司与基站所在地群众纠纷时有发生[4]。随着移动通信技术和经济的发展,以及居民对健康要求的提高,研究移动通信基站的电磁辐射污染是非常必要的[5]。

目前,对于移动基站辐射研究主要集中于天线主射方向,即基站的前向场,对其辐射空间分布特征及其与通话量大小的关系进行了较多报道[6-9]。但对于主辐射后向场辐射状况尚未进行系统研究,但后向场的辐射污染也是不容忽视,研究其辐射空间分布特征对天线后向场的电磁安全防护是十分重要的。

1 材料与方法

1.1监测点的选择

本研究在四川三个地级市选择话务量较大的7个GSM基站扇区进行监测,分别记为GA1、GA2、MS1、MS2、LP1、LP2,各扇区特征值见表1。

表1 各监测扇区特征值

图1移动基站后向场电磁辐射环境监测布点示意图

监测点位的布置是以天线为中心,在天线面板背面180°范围内,垂直方向测试高度取人体高度1.7m,水平方向上分别以观察点位到天线后方的水平距离(0.3m、0.5m、1.0m、1.5m、2.0m、2.5m、3.0m)为半径作半圆圆弧,在0°~180°范围内变化,把0°~180°划分为6个区域,分别为0°、0°~30°、30°~90°、90°~150°、150°~180°和180°,再根据每个圆弧大小,在圆弧上设置4~8个点位进行测量,如图3所示。电场监测仪器为型号PMM8053B / EP33M的电磁辐射分析仪,监测电磁波范围为700MHz~3GHz,监测指标为电场强度(E),各点监测六次,取平均值。

1.2监测时段

选择通话高峰期作为监测时段:上午9:00至13:00、下午15:00―23:00是话务量高峰期。

1.3数据处理

根据实标测量电场强度值(E),按式1换算成以W/m2为单位的功率密度(S),以便和标准相比较,置信概率以50%计。

(1)

2 结果与分析

2.1后向场功率密度值在水平方向的变化规律

表2 后向场功率密度值随距离变化(单位:10-2W/m2)

由表2 可知,随着监测点位距天线后方水平距离的增加,6个扇区后向场功率密度值均明显降低,各个扇区功率密度最大值均出现在距扇区后方0.3m处。由图2 可知,GA2、LP2两扇区在0.5m处功率密度较0.3m处即可衰减约50%,GA1、LP1、MS2三个扇区在1.0m处功率密度较0.3m处可衰减约50%,MS2扇区则在1.5m处功率密度较0.3m处即可衰减约50%,这说明基站扇区后方0.3m-1.5m处功率密度变化率较大。当监测点位距天线后方的水平距离为3m时,各扇区功率密度已分别衰减为0.3m处功率密度值的91.6%、95.4%、94.1%、90.1%、93.9%和78.1%。

图2 不同监测距离较0.3m处功率密度衰减率

图3后向场扇区功率密度值随角度变化图

2.2 后向场功率密度在水平角度上的变化特征

由图可知, 6个扇区后向场功率密度随角度变化的规律,均表现随着角度的增大先降低再升高的趋势。当监测角度为0°和180°时(角度与主射方向垂直时)功率密度最大,并且180°时功率密度明显高于0°;0°~30°和150°~180°角度范围内,功率密度值逐渐减小,分别为180°时功率密度值的26.69%和38.71%;当监测角度为主射方向正后方,即30°~150°角度范围内时,功率密度值最低,其功率密度值分别为180°时功率密度值的17.40%(30°~90°)和21.35%(90°~150°)。

2.3安全防护距离分析

由于电磁辐射属于微波段,按照GB8702-88标准的规定,对处于30~3000MHz频率范围内微波电磁辐射,公众在一天24h内受到的照射,在任意连续6min内所接受的电场强度的平均值应低于0.4W /m2的限值规定,为使公众受到总照射剂量小于此规定限值,辐射限值取《电磁辐射防护规定》(GB8702-88)场强限值的,或功率密度限值的1/5作为评价标准。因此,本研究对单个GSM基站电磁辐射功率密度评价标准为0.08W/m2。

表5中所列功率密度值为六个移动基站后向场扇区的观察点位到天线后方的不同水平距离的半圆弧上(180°范围内)设置的监测点位中的监测最大值。

表3后向场实测数据最大值(W/m2)

从表3可看出,后向场监测功率密度最大值表明,GA1、LP2、MS2三个扇区在0.3m处功率密度即小于0.08W/m2的评价限值;而GA2、LP1、MS1三个扇区在1m处功率密度小于评价限值。综合考虑,可认为移动基站后向场1m为电磁辐射安全距离,其辐射功率密度值不会对人体健康造成影响。

3结论

通过对6个扇区后向场电磁功率密度值监测分析,结果表明,后向场功率密度值随着测试点位与天线的距离增大而减小,0.3m处最大;监测角度为主射方向正后方(30°~150°)时功率密度值最小,监测角度为主射方向垂直方向时(0°和180°)时功率密度值最大;后向场电磁辐射在距中心点1m处即不会对人体健康造成伤害。

参考文献

[1] Silverman C. Epidemiology of microwave effects in humans epidemiology and quantitation of environmantal risk in humans from radiation and other agents [M]. New York: Plenum, 1985.433-458.

[2] Al-Otaibi A H, Al-Aimi D. Monitoring of electromagnetic radiation from cellular base stations in KUWAIT [J]. Radiation Protection Dosimetry, 1998, 80(4): 397-404

[3] Lambdin D L. An Investigation of energy densities in the vicintyof vehicles with mobile communications equipment and near ahand-held walkie talkie [R]. EPA,1979.

[4] 金亮.移动通讯基站的电磁辐射环境影响[J].科技资讯,2007,(22):141

[5] 朱 丹,戴继伟.移动通信基站的环境电磁辐射测量与分析[J].上海环境科学, 1997,(11): 32-34

[6] 孙全红,阮黎东.移动通信基站的电磁环境影响[J].移动通信,2005,(8):90-91

[7] 沈荔菁,曾伟杰.移动通信基站电磁辐射对环境影响的研究[J].中国无线电,2006,(1):30-33

[8] 陆斌.蜂窝移动通信设备原理与维护[M].北京:人民邮电出版社,1997

[9] 王亚民,张永富,张金明. 移动通信基站电磁辐射环境监测布点的讨论[J]. 辐射防护通讯, 2002,(3) : 27 -29

上一篇:区域地理复习应避免的问题 下一篇:关于公路工程监理投标文件的编制工作探析