一种光电式风速风向测量系统

时间:2022-02-15 08:32:40

一种光电式风速风向测量系统

摘 要 本文以STC89CS52单片机为核心给出了风速风向测量系统的硬件及软件设计方案,系统的硬件分为电源部分,风速采集部分,风向采集部分,单片机部分等;软件部分的设计采用模块编程,并且详细介绍了光电编码技术在风速风向测量中的应用。

【关键词】单片机 光电编码器 LED 测量

1 设计方案

系统设计要求在单片机的控制下完成风速风向的采样工作,并根据不同的风速,采用M法和T法进行计算,并显示测量的风速,根据风向的情况自动测量并显示。本次设计的电路主要有风速风向采集电路,STC89CS52单片机系统,显示电路,复位电路,软件设计包括基本采集模块,系统模块,显示模块等设计,大致设计的思路如图1所示。

风速风向仪的硬件系统包括单片机系统,测风速部分,测风向部分以及显示部分,风速风向仪的硬件系统框图如图2。

2 软件设计

2.1 主程序流程图

STC89C52单片机使用经典的MCS-51内核,但做了很多的改进使得芯片具有传统51单片机不具备的功能。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。首先是要对STC89C52进行初始化。初始化内容包括定时器、中断系统及各个单元内容的初始化。然后进入到主程序中,开始对脉冲信号进行采样、处理这里是程序设计的关键。

2.2 转速测量方法

转速测量方法可以主要分为三类:

2.2.1 机械rpm转速测量

通过机械测量传感器采集数据,是最古老的rpm转速测量方法。传感器采集到的转速资料,还要通过仪器内部的电子分析。这种测量方法仍被应用,但大多数用于20至10000rpm的低转速测量。这种测量方法在测量过程中依赖于接触压力,其最大的缺点是加载运动不连续。另外,机械转频闪法测量rpm转速不可应用于细微物体,如果转动率过高,易发生滑走情况。

2.2.2 采用反射原理的电力转速测量法(光学rpm转速测量法)

测量仪器发射出的红外线经固定在待测目标上的反射条反射后,即携带上有关转速信息。测量仪器接收反射波后,经过处理即可得到转速。这种测量方法虽然要比机械rpm测量法先进,但是并非所有持待测目标上都可以安装反射条。

2.2.3 频闪rpm转速测量法

按照频闪原理,当高速闪光的频率和目标的rpm转速(移动)同步时,在观察者的眼中,目标是静静止的。同其它的测量方法如机械法或光学传感器法直比,频闪原理的优点显而易见:这种方法可以用于测量小型目标或不便触及部位的rpm,而不需要在待测目标上固定反射条。例如,如用于生产过程测量时,便不需中止。测量范围:100至20000rpm。除了测量rpm转速外,频闪测量法还可用于振动分析和动作监控。

对于不同形式的测量方法其测量范围如图3所示。

目前,在以光电编码器构成的测速系统中,常用的数字式转速测量方法主要有三种,分别是M法(频率法)、T法(周期法)、M/T法(频率/周期法)。M法是在既定的检测时间内,测量所产生的转速脉冲信号的个数来确定转速,比较适合于高速场合;T法是测量相邻两个转速脉冲信号的时间来确定转速,适合速度比较低的场合;M/T法是同时测量检测时间和在此时间内的转速脉冲信号的个数来确定转速。

2.3 测量方法比较

T法适合速度比较低的场合,当转速较高时其准确性较差;而M法其性能特点正好与T法相反,比较适合于高速场合,M/T法则是前两种方法的结合,在整个速度范围内都有较好的准确性,但对于低速,该方法需要较长的检测时间才能保证结果的准确性。三种方法的各项性能比较如表1所示:

表1 中,m1、m2:检测时间间隔内的脉冲计数值(分别对应M、T法);T为规定的检测时间间隔;P为圆光栅编码器每转一圈发出的转速脉冲信号的个数;fc为T法中已知频率值(填充被测频率相邻两个脉冲的间隔);n是电机每分钟的转速;Ttach为圆光栅测速脉冲周期;e是圆光栅编码器的制造误差。

由表1可知:从测速精度来看,若要求高精度测速,M法中应计数值m较大,当检测时间Tg选定后(一般不应过长,以保证测量条件不变且速度快,实现测量快速性),只有被测转速n较高或圆光栅编码器每转一圈发出的转速脉冲信号个数P较多,才能使m1较大。对于P给定情况,只有n大时,m1才大。可见M法适于高速测量。经类似分析可知T法适于低速测量,考虑高速和低速时的综合性能M/T法最好。

从检测时间来看,M法的检测时间与转速无关,T法的检测时间随着转速的增加而减小,若M/T法牺牲一点分辨率,则可以使检测时间与M法几乎相同。因此,从综合效果看M/T法是较好的测速方法。

从计算方法来看,M法与T法较为简单,而M/T法的计算较为复杂。

2.4 转速测量方案选定

对于一个转速检测系统来说,其关键在于能够使测速结果在整个转速范围内的准确性和分辨率为最佳,并满足快速的动态响应要求。为此,将速度范围分为两部分,分别采用两种方式进行检测:对应于低速段,采用T法。

2.5 风向测量方案选定

测风向采用风带动风向标旋转并带动主轴,可以使用机械式测量或者传感测量,机械式测量方法比较落后,精确度也很低,几乎没有智能化,所以现在已经很少采用。传感器测量采用各种方向传感器进行方向测量的一种方法,按其信号输出方式可以分为光电式,电阻式等,本文选用绝对式光电编码器,其输出的信号可以是BCD码,可以直接被单片机接受,灵敏度也很高较之电阻式传感器使用更方便(由于这个原因,本文实物部分可能与设计有不同)。而且绝对式编码器有一个零位参考点,风向要求单圈测量,范围在0-360°内,所以可以用零位参考点对每圈的测量结果进行复位,输出复位信号到单片机,即使断电或者其他原因引起测量滞后也没有影响,因为他的测量结果只与前后的位置有关。绝对式编码器的精度与它的位数有关,也就是他的输出信号线的多少,精度计算公式为

3 系统的调试

3.1 硬件调试

为安全起见,首先必须进行断电调试。确认电源电压是否正常。用电压表测量接地引脚跟电源引脚之间的电压,看是否是电源电压,例如常用的5V。接下来就是检查复位引脚电压是否正常。分别测量按下复位按钮和放开复位按钮的电压值,看是否正确。然后再检查晶振电路是否起振了,此,现在已经很少有用外部扩ROM的了),一定要将EA引脚拉高,否则会出现程序乱跑的情况。如果系统不稳定的话,有时是因为电源滤波不好导致的。在单片机的电源引脚跟地引脚之间接上一个0.1uF的电容会有所改善。如果电源没有滤波电容的话,则需要再接一个更大滤波电容,例如220uF的。遇到系统不稳定时,就可以并上电容试试(越靠近芯片越好)。

3.2 软件调试

结构化软件的调试一般可以将重点放在分模块调试上,统调是最后一环。软件调试可以采取离线调试和在线调试两种方法。前者不需要硬件仿真器,借助于软件仿真器即可;后者一般需要仿真系统的支持。但对于经验丰富的人来说,可以不要仿真器,直接将程序代码烧录到芯片,直接通电试验,观察关键现象。以

参考文献

[1]方严军,孙健.智能仪器技术及其应用[M].北京:化学工业出版社,2007.

[2]杨志忠,卫桦林,郭顺华.数字电子技术基础[M].北京:高等教育出版社,2004.

[3]陈梓城,方勤.模拟电子技术[M].北京:高等教育出版社出版社,2003.

作者单位

1.济南职业学院 山东省济南市 250000

2.山东科学院 山东省济南市 250014

上一篇:政府招商能力在招商引资工作中的重要性研究 下一篇:超声波液位仪的设计与制作