碳纤维复合材料范文

时间:2023-03-13 18:11:02

碳纤维复合材料

碳纤维复合材料范文第1篇

关键词:碳纤维;航天;航空;应用

一、引言

碳纤维是近几十年发展起来的一种新型材料,它是碳纤维与树脂、金属、陶瓷等基体复合制成的结构材料。其直径6~8μm之内,它是一种直径极细的连续细丝材料。目前用在复合材料中的碳纤维主要有聚丙烯腈基碳纤维和沥青基碳纤维两大类,分别用聚丙烯腈原丝、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、氧等元素得以排出,成为一种接近纯碳的材料,含碳量一般都在90%以上,而本身质量却大为减轻;碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。它是一种轻质、高强度、高模量、化学性能稳定的高性能纤维材料。

二、碳纤维复合材料的性能

碳纤维复合材料与金属材料或其他工程材料相比,具有以下许多优良的性能:

(1)比强度和比模量高

碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7-9倍,抗拉弹性模量为23000-43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。

(2)良好的耐疲劳性能

当裂纹由表面向内层扩展时,到达某一纤维取向的层面时,会使裂纹扩展在该层面内呈现断裂发散,因此层压的CFRP对疲劳裂纹扩张有“抑制”作用,这种特性使得CFRP的疲劳强度大大提高。研究表明CFRP的疲劳强度是静力强度的90%。

(3)良好的抗腐蚀性

CFRP具有良好的耐酸、耐碱及耐其他化学腐蚀性介质的性能,这是因为其表面具有一层高性能的环氧树脂或其他树脂塑料。该优点使得其更具有竞争力,特别是在未来的电动汽车或其他有抗腐蚀要求的领域上。

三、碳纤维复合材料的应用

碳纤维复合材料主要是以满足航空航天对高性能材料的要求而发展起来的。随着碳纤维复合材料的优异性能越来越多地被认识和接受,其在能源、交通、汽车、海洋、建筑及其他工业部门的应用近年来在快速地发展。

(1)在航空领域的应用

为了提高和改善飞机性能,早在20世纪50年代,美国空军材料实验室就开始寻求一种新型的结构材料,碳纤维复合材料正是在这种背景下被列入发展计划。近40年来,在航空航天领域应用得到长足的发展,主要用作主承力结构材料,如主翼、尾翼和机体;次承力构件,如方向舵、起落架、副翼、扰流板、发动机舱、整流罩及座板等,此外还有C/C刹车片等。

(2)在航天领域的应用

用作导弹防热及结构材料如火箭喷管、鼻锥、大面积防热层;卫星构架、天线、太阳能翼片底板、卫星-火箭结合部件;航天飞机机头,机翼前缘和舱门等制件;哈勃太空望远镜的测量构架,太阳能电池板和无线电天线。

(3)在能源、汽车及其他工业部门的应用

随着全球石油资源紧缺局面的加剧,新能源的开发和利用已成为当今十分重要的研究课题,其中风能的开发和利用已形成全球的共识。MW级的风机叶片长度在40m以上,10MW级的风机叶片长度达60m,采用碳纤维复合材料能满足叶片轻质、高强度和高模量的要求。因此风电市场的快速增长将极大地推动碳纤维复合材料产业的发展。

对于未来的汽车工业,碳纤维复合材料将成为汽车制造的主流材料。2001年宝马公司率先开发和试验高强轻质的碳纤维复合材料(CFRP)车体板和其他部件,所用碳纤维系Zoltek公司生产的大丝束产品。英国Cranfield大学的研究成果也表明,每年生产2万辆的CFRP汽车是可行的。这种轻质化材料的汽车将改进其燃料效率,轻质化材料部件的刚性比钢制部件高,在高风阻力下具有良好稳定性,这一点对赛车和运动型车而言更为重要。目前已研制出的CFRP汽车长4.3m、宽1.7m、高1.4m,重量只有570kg。CFRP材料由德国Tenax公司生产提供。

聚合物树脂基体以及高性能的玻璃纤维、碳纤维和芳纶增强体的复合材料在一些新的应用领域取得进展,如具有防爆功能的装甲复合材料,以天然气作动力的汽车发动机汽缸,机械驱动轴,高速路高架桥承载梁等,在基建、兵器、医疗器械、体育休闲用品等领域都存在巨大的市场潜力。

参考文献:

[1]李威,郭权锋.碳纤维复合材料在航天领域的应用.中国光学,2011,4(3):202-209.

[2]贺福,孙微.碳纤维复合材料在大飞机上的应用.高科技纤维与应用2007,32(6):5-8.

[3]孙浩伟,李涛.碳纤维及其复合材料在国外军民领域的应用.纤维复合材料,2005(3):65-67.

[4]胡兴军.碳纤维在汽车上的应用.技术应用,2008(12):52-53.

碳纤维复合材料范文第2篇

一、碳纤维复合材料的回收方法

1.高温热解法热解法是当今唯一已经实现商业化运营的碳纤维增强复合材料的回收方法,这种工艺是在高温下使复合材料进行降解,以得到表面干净的碳纤维,同时还可以回收部分有机液体燃料。日本在福冈县兴建的中试厂,每年可处理碳纤维复合材料废弃物60t。意大利的Karborek等开发了一种在加热过程中碳纤维不会被碳化的工艺技术,可得到的比原始纤维长度较短的碳纤维[4]。从2003年,英国的MilledCarbonFiberLtd.开始回收加工碳纤维复合材料,是全球首家商业运营的专业回收公司。他们利用一套长达37m的热分解设备,每年大约可处理2000t的废弃碳纤维复合材料,所生产的再生碳纤维的产量为1200t。其处理方法是在无氧状态下加热碳纤维复合材料废弃物,保持温度在400~500℃之间,得到的清洁碳纤维可具有90%~95%原始纤维的力学性能,同时分解出的热解气或热解油也可用作热分解的加热能量[5]。美国AdherentTechnologiesInc(ATI)发明了一种低温、低压的碳纤维复合材料热分解工艺,检测表明,用这种方法回收并处理后碳纤维的表面基本上没有受到损伤,碳纤维强度比原始纤维降低约为9%左右[6]。丹麦的ReFiber公司通过在无氧环境条件下,在温度为500℃的旋转炉中将碳纤维复合材料气化,成功地用高温热解法回收了复合材料风机叶片。德国的KarlMeyer再生材料公司开发的一种在加热炉中通入保护气体用以隔绝氧气的新工艺,可使碳纤维复合材料分解后碳纤维基本没有受到损伤。在这项工艺的研究中,该公司得到了陶氏化学公司和众多研究所的技术支持和帮助,目前研制成功的试验装置已经正式投入了营运[7]。值得注意的是,采用高温热解法虽然可以得到比较干净、长度较短的碳纤维,同时分解的复合材料的产物还可用作燃料或其他用途,但是碳纤维由于受到高温和表面氧化等作用,碳纤维的力学性能降低的幅度比较大,这将使碳纤维的再利用受到一定的影响。

2.流化床热分解法流化床热分解法是一种采用高温的空气热流对碳纤维复合材料进行高温热分解的碳纤维回收方法,通常这种工艺还采用旋风分离器来获得填料颗粒和表面干净的碳纤维。英国诺丁汉大学对于流化床热分解工艺方法进行了系统研究,结果表明这种方法特别适用于那些含有其他混合物及污染物碳纤维复合材料报废零部件的回收和利用[8]。Jiang等研究了在流化温度500℃、流化速率1m/s、流化时间10min试验条件下得到回收纤维的表面特征,表面分析表明,碳纤维原始表面上的羟基(-OH)转变为氧化程度更高些的羰基(-C=O)和羧基(-COOH),但其表面的氧/碳不变,而且碳纤维表面这种变化不影响回收纤维和环氧树脂之间的界面剪切强度[9]。Yip等用温度450℃的流化热流,其速率为lm/s、流化床上砂粒的平均粒度为0.85mm的条件下,对碳纤维复合材料进行热分解试验,回收得到的碳纤维长度为5.9~9.5mm。试验表明,回收纤维的拉伸强度约为原纤维的75%,而弹性模量基本上没有变化,因而回收得到的碳纤维可部分或全部取代原始短切碳纤维;并且原始碳纤维长度越长,回收得到的碳纤维的长度也越长[10]。大量的试验研究结果表明,流化床热分解造成碳纤维拉伸强度降低的主要影响因素是砂粒对纤维表面由于摩擦作用造成了一定的损伤,而且碳纤维与旋风分离器壁的摩擦也造成了碳纤维表面的破坏。因此,虽然用流化床分解法回收可得到比较干净的碳纤维,但由于这种工艺受高温、砂粒磨损等影响,导致了碳纤维长度变短和碳纤维力学性能下降,因而也将影响所回收碳纤维的实际应用范围。

3.超/亚临界流体法当液体的温度及压力处于临界点或临界点的附近时,液体的相对密度、溶解度、热容量、介电常数及化学活性等各种性质都将会发生急剧的变化,从而使液体具有很高的活性、极强的溶解性、特异的流动性、渗透性、扩散性等性质,人们正是利用超/亚临界液体的这些特性,利用它们具有对于高分子材料的独特溶解性能来分解碳纤维复合材料,在期待能最大限度地保留碳纤维的原始性能的前提下,获得到干净的碳纤维。PineroHemanzR等研究了在超临界水中碳纤维增强环氧树脂复合材料的分解过程。试验表明,在673K、28MPa下经30min反应,环氧树脂的分解率为79.3%,当加入氢氧化钾(KOH)催化剂,环氧树脂的分解率达到95.3%,而且所得到的碳纤维的拉伸强度能够保持为原始纤维的90%~98%[11]。XiuFR等在在固体与液体比例为1∶10~1∶30g/mL的条件下,经过在温度300~420℃时分别反应30~120min后,研究了废弃印刷电路板在超临界甲醇中的分解机理。试验结果分析表明,上述条件下分解的主要产物为含苯酚和甲基苯酚衍生物,并且发现当反应的温度提高时,甲基苯酚衍生物的含量有所增加[12]。Liu等系统地研究了温度、压力、时间、催化剂及树脂与水的比例这些因素对于复合材料分解的影响,表明原材料与水的比例对环氧树脂的分解影响不大,而对于分解影响比较大的因素是分解反应的温度、时间和压力。同时,试验结果还表明,当原料比为1g复合材料∶5mL水时,在温度为290℃、经过75min反应后,环氧树脂的分解率可高达到100%[13]。Bai等研究了在30±1MPa和440±10℃条件下,氧化的超临界水对碳纤维增强环氧树脂的分解过程,结果表明在树脂的分解率为85%时,碳纤维的表面上仍然有少量的环氧树脂存在;而当树脂的分解率达到96%时,在碳纤维的表面上已经基本上没有树脂的残留。所获得的碳纤维力学性能测试表明,随着树脂分解率增加,碳纤维的拉伸强度也进一步下降,分析认为这是由于回收的碳纤维的表面发生了过度氧化所致[14]。日本的Okajima等在400℃、20MPa、45min的试验条件下,用2.5%碳酸钾(KCO3)作催化剂,在超临界状态下环氧树脂的分解率为70.9%,而且得到的碳纤维的拉伸强度比原始纤维下降了15%[15]。英国诺丁汉大学的Pickering研究团队在超临界状态下研究了水、二氧化碳,甲醇、乙醇、丙醇和丙酮等多种溶剂对于碳纤维复合材料的分解作用,结果表明丙醇的溶解作用最好。试验结果表明,用超临界丙醇回收的碳纤维的拉伸强度和刚度的是原始纤维99%;同时,研究还表明,甲醇和乙醇对聚酯类树脂的溶解效果比较好,而对环氧树脂的溶解效果比较差,而丙醇可很好地分解环氧树脂复合材料[16]。我国哈尔滨工业大学的白永平等在超临界水中通过添加氧气,使分解速度大大提高,而且回收得到的碳纤维的强度几乎没有下降[17]。

二、CFRP的回收存在的主要问题

由于热固性塑料经过固化处理后,其内部交联成一种网状结构的稳定状态,因而具有了不溶于各种溶剂,在加热过程中也不会熔化的特性,长期放置或掩埋也不会分解。因此,热固性复合材料废弃物的回收早在20世纪90年代初就已经受到学术界和工业界的高度关注,然而到目前为止,虽然有一些工艺和设备已经投入生产应用,但大部分的研究还处于试验阶段。从国内外目前碳纤维回收技术来看,碳纤维复合材料的回收原料主要以生产废料和损坏或淘汰的复合材料零部件等,因而对于不同种类的碳纤维复合材料废料分类回收还没有系统化;当前大量采用的热融化树脂制取碳纤维丝束,导致碳纤维性能大大降低,其性能和价格在市场上没有竞争力;其他一些方法虽然可将碳纤维从复合材料中分离出来,但由于纤维变短和性能下降,同时还会产生环境污染,因而还有待进一步研究与完善[18]。近年来,各工业大国都在进行碳纤维复合材料废弃物的回收与再利用研究,以开发出高效、经济和可行的碳纤维回收利用技术,主要研究集中在粉碎碳纤维增强塑料、热分解碳纤维复合材料、催化分解碳纤维复合材料、流化床回收碳纤维复合材料等回收工艺技术和再利用技术。如康隆(Cannon)公司参与了欧洲一个碳纤维回收再循环利用的项目,用回收的碳纤维绒毛或碳纤维毡加工复合材料部件,由于这些回收再利用碳纤维大约是原生材料价格的一半左右,而且其力学性能可达到全用新碳纤维制造部件的85%,因而经济效益非常可观。

最近,德国的KarlMeyer再生材料公司在特殊的加热炉中采用保护气体的装置回收碳纤维,所得到的碳纤维在外观上与新碳纤维差别不很大,但纤维的长度比较短,而且强度也有所下降,由于其价格比新碳纤维低廉,因而可以用机内饰或其他的复合材料部件。另据报道,波音787梦想飞机将用50%碳纤维材料制造,宝马2款新车型的客舱用碳纤维制成,为此2公司签订了碳纤维复合材料回收利用研究的技术协议。再如,美国诺丁汉大学和波音公司计划每年投资100万美元,共同研究所有复合材料回收利用技术,主要进行碳纤维回收工艺研究过程、回收碳纤维重新应用等[19]。但到目前为止,这些开发工作还没有进入实质性的研制阶段,因而真正实现产业化回收和利用还尚需时日。碳纤维复合材料的回收和再利用具有多方面的经济效益,碳纤维回收和再利用不仅可以实现高价值材料的再利用,而且碳纤维复合材料部件回收和再利用可大大减少能源消耗和环境污染。但是,目前碳纤维复合材料回收和再利用仍面临着许多问题,如碳纤维复合材料废弃物的收集和分类比较困难;废弃物回收和再利用的工艺技术还不十分成熟,大多数新研制的工艺技术仍停留在实验室阶段,最终实现商业化生产还需要做很多工作;目前虽然已建有回收碳纤维复合材料的公司并可生产再生碳纤维,但再生碳纤维的利用还受到各种因素的限制,如其力学性能不稳定就难以为用户接受,也难以在要求性能较高的零部件上应用。

三、结语

目前,碳纤维复合材料已经成为军工、能源、交通、化工、电力等行业中必不可少的新型结构和功能材料,特别是随着我国航空工业、汽车工业和风电产业的高速发展,碳纤维复合材料的应用将越来越广泛,其废弃物的回收和再利用将会成为必然要面临的重要问题。所以研究和开发碳纤维增强复合材料高效的回收利用技术,对于复合材料产业的发展将会具有十分重要的作用,而且对于保护环境和经济发展也将有非常重要的影响。因此,必须从战略层面上高度重视碳纤维复合材料的回收与再利用,特别是要注重基础技术研究的超前性,为此就应该紧密跟踪国外研究的最新成果,并结合我国的实际情况,研制出更加经济、实用的回收和再利用方法,为我国碳纤维复合材料产业健康、可持续的发展打下坚实的技术基础。另外,在加强对碳纤维回收方法研究的同时,还应根据国内的市场需求,进一步加强引导,不断扩大回收利用碳纤维的应用领域并提高回收利用碳纤维的使用比例。为此,建议有关部门加强碳纤维复合材料回收利用相关法律的制定和宣传力度;大力开发和研究碳纤维复合材料废弃物的回收处理和再利用技术,并将其列入国家的发展计划,设立专门的研究机构和专题,积极支持高校和研究单位开展相关的研究,以期大幅度提高我国碳纤维循环利用的总体水平。

碳纤维复合材料范文第3篇

关键词:聚丙烯腈;碳纤维;复合材料

中图分类号:TQ342+.74 文献标志码:A

Current Situation of the Carbon Fiber and Related Composites Industry

Abstract: By discussing the spinning, pre-oxidation, carbonization, compounding and recycling technologies for making carbon fiber and related composites, the paper discussed the present situation of technological development in the field of carbon fiber and related composites; analyzed the market situation of such products and their application prospects in aerospace, national defense, wind turbine, sport and leisure, transportation vehicles, civil-engineering, etc. It also pointed out some problems existing in China’s carbon fiber industry and gave related solutions.

Key words: polyacrylonitrile; carbon fiber; composites

碳纤维分为PAN基碳纤维、粘胶基碳纤维和沥青基碳纤维,其中PAN基碳纤维市场占有率超过90%,其生产流程包括纤维纺丝,预氧化、碳化,复合成型和回收利用等流程。

1 碳纤维及复合材料生产技术现状

1.1 原丝生产技术现状

原丝的高纯化、高强化、致密化以及表面光洁是制备高性能碳纤维的首要条件。在PAN基碳纤维生产中,原丝约占总成本的50% ~ 60%,原丝质量既影响碳纤维的质量,又制约其生产成本。

原丝生产包括聚合和纺丝。原丝聚合是丙烯腈和第二单体、第三单体在引发剂作用下进行共聚反应,生成PAN纺丝液。日本东丽采用AIBN(偶氮二异丁腈)作引发剂,二甲基亚砜(DMSO)作溶剂,DMSO+AIBN体系凭借其操作安全和高质量产品,成为碳纤维丙烯腈聚合的主流方法。PAN基碳纤维原丝通过湿法和干喷湿纺纺丝工艺制造。湿法纺丝是碳纤维生产普遍采用的方法,其技术成熟,易工程化,所得原丝纤度均匀且纤维表面沟槽结构易于后道复合加工;干喷湿纺是将干法和湿法结合的新方法,可实现高品质原丝的细纤化和均质化,纺丝速度是湿法纺丝的 5 ~ 10倍,是高性能原丝生产最好方法之一。东丽、三菱丽阳,美国赫氏和韩国晓星都拥有干喷湿纺纺丝技术,中国中复神鹰、中油吉化等少数企业掌握干喷湿纺T700级碳纤维原丝生产技术,但产品的稳定性有待提高。

1.2 碳纤维的生产技术现状

原丝经预氧化、碳化和后处理等工艺制得碳纤维。预氧化是纤维组织结构转变的过渡阶段,在保证丝条均质化的前提下,缩短预氧化时间,可以降低生产成本。碳化是纤维乱层石墨结构的成形阶段,可使纤维强度大幅提升,碳化条件控制不当会造成纤维结构中有空隙、裂纹等缺陷,影响碳纤维性能。石墨化即高温下牵伸,使纤维由乱层石墨结构向三维石墨结构转化,提高碳纤维弹性模量。

碳化炉是制造碳纤维的关键设备,国产碳化炉发热体最高耐热温度1 400 ℃,而国外大规模高温碳化炉对我国实行出口限制,中等规模碳化炉价格又很高,提高了国内碳纤维的建设成本,导致国产碳纤维市场竞争力不足,研发高强级碳纤维生产线的国产设备迫在眉睫。

1.3 碳纤维增强复合材料技术现状

碳纤维增强复合材料是以碳纤维及织物为增强体、树脂为基体制成,其代表是以三维编织物为增强体,采用树脂传递模塑工艺(RTM)进行浸胶固化而成的三维编织复合材料。三维编织技术具有较强的仿形编织能力,可以实现复杂结构的整体编织,常用编织工艺有四步法、二步法及多层联锁编织工艺。四步法操作灵活性强,编织物整体结构好,但编织速度较慢,对设备要求较高;二步法织造简单,易实现自动化,适合编织较厚制件,但其执行机构以间断的离散方式运动;多层联锁编织工艺编织的织物机械性能好,设备可平稳连续工作,但不易实现自动化生产。目前可满足大而厚预制件编织需求的大型三维编织机不多,设计与研发高水平的三维编织机仍是努力的方向。

三维编织实现了增强材料的整体成型,而RTM工艺正是适于整体成型的工艺方法。RTM工艺是将液态树脂注入闭合模具中浸润增强材料并固化成型的工艺方法,是接近最终形状部件的生产方法,基本无需后续加工。由于其效率高、能耗低、工艺适应性强等优点,适宜多品种、高质量的先进复合材料加工。RTM-三维编织复合材料是完全整体结构,与传统复合材料相比,具有较高的损伤容限、强度和模量,为复合材料应用于承力结构件,特别是应用于航天航空等领域提供了广阔前景。

1.4 碳纤维增强复合材料回收利用现状

回收利用碳纤维可降低能耗、节约能源,主要方法有高温热解法、流化床分解法和超/亚临界流体法。高温热解法是在高温下使复合材料降解,回收的碳纤维力学性能降低幅度较大,影响碳纤维再利用,是目前唯一商业化运营的回收方法;流化床热分解法采用高温空气热流对复合材料进行高温热分解,通常用旋风分离器来获得表面干净的碳纤维,由于受高温、砂粒磨损的影响,碳纤维长度变短、力学性能下降,影响回收碳纤维的应用范围;超/亚临界法是利用液体在临界点附近具有高活性和高溶解性等性能来分解复合材料,最大限度地保留碳纤维的原始性能,由于其独特的优越性,受到产业界高度重视,将可能成为碳纤维主要回收方法之一,目前多数回收技术仍停留在实验阶段,商业化道路漫长。

2 碳纤维及复合材料市场现状分析

2.1 碳纤维市场现状分析

碳纤维分为大丝束碳纤维(>24K)和小丝束碳纤维(

2.2 碳纤维复合材料市场现状

2013年碳纤维复合材料总产值147亿美元,其中CFRP产值94亿美元,约占64%。碳纤维复合材料的需求7.2万t,2020年需求将达14.6万t(表 2),2010 ― 2020年复合年均增长率超过11%。

碳纤维复合材料主要应用到国防航空、交通工具、风力发电、运动休闲、土木建筑等领域,各领域产值见表 3。

(1)国防航空

2013年碳纤维增强复合材料在国防航空领域产值达41.2亿美元,其中民用航空24.7亿美元,占60%,军用飞机占16%,商业飞机占8%。在航空领域,碳纤维复合材料占空客A380结构材料的20%以上,波音787结构材料中近50%使用碳纤维复合材料和玻璃纤维增强塑料。碳纤维复合材料取代金属结构材料,减轻机身质量,节约燃油,在航空领域应用不断拓展。在国防领域,碳纤维复合材料已用于隐形机、战斗机、导弹等开发。美国研制出世界上最小无人机,主体由碳纤维制成,仅重106 mg,用于搜索和救援行动,美国F-22和F-35战斗机,欧洲A400M大型军用运输机,日本M-5火箭等都在不断拓展碳纤维复合材料的应用。美国防部在“面向21世纪国防需求的材料研究”报告中强调,“到2020年,只有复合材料才有潜力使装备获得20% ~ 25%的性能提升”。

(2)交通工具

2013年碳纤维增强复合材料在交通工具领域产值达22亿美元,其中汽车领域10.1亿元,占总产值46%,卡车领域占18%,摩托车占15%,客运火车占13%。CFRP具有轻质高强的特点,逐渐成为汽车轻量化首选材料。试验证明,汽车重量降低1%,油耗可降低0.7%;汽车质量每减少100 kg,百公里油耗可降低0.3 ~ 0.6 L。全球大型汽车制造商积极联合碳纤维生产企业,旨在突破碳纤维零部件的低成本工业化生产,广泛应用于普通汽车。

(3)风力发电

2013年碳纤维增强复合材料在风力发电领域产值达17.6亿美元,消耗碳纤维约6 700 t。1985年风轮平均直径仅15 m,单位产出低于 1 MW,到2013年风轮平均直径达100 m,平均产出为2.5 MW。当风轮叶片长度在40 ~ 50 m时,碳纤维是唯一能用于制造叶片的材料,随着风电装机容量的增加,也必然会促进碳纤维在这领域快速发展。风力发电主要集中在3 个国家,2013年中国达91 GW,占全球30%,其次是美国和德国,分别达62G W和34 GW。

(4)运动休闲

2013年碳纤维增强复合材料在运动休闲领域产值达14.7亿美元,其中高尔夫杆等产品产值5.6亿美元,占38%,网球和羽毛球球拍占21%,自行车占14%。运动休闲用碳纤维消耗量最大在亚洲,特别是中国,高尔夫球杆、网球拍、钓鱼竿、自行车架、船桨、公路赛车等都用到碳纤维。由于成本问题,制约碳纤维在该领域的快速发展,预计2015年全球运动休闲领域对碳纤维需求增长依然保持在4%左右。

(5)土木建筑

2013年碳纤维增强复合材料在建筑工程领域产值达5.9亿美元,消耗碳纤维约2 300 t。随着碳纤维成本降低与复合材料加工技术的发展,土木建筑领域将成为碳纤维复合材料应用新市场。碳纤维复合材料层板加固或修复桥梁及建筑物,碳纤维增强混凝土等都将会有很大发展。在美国约有30万座桥有潜在维修需求,德国在2030年前将投入160亿欧元,用于修复桥梁和路面。预计未来 5 年,碳纤维复合材料在土木建筑领域将以6%左右速度增长。

3 中国碳纤维发展之路

2013年我国碳纤维产能达1.8万t,实际产量约3 000 t,全为小丝束。碳纤维指标达到东丽公司T300水平,但质量稳定性还需提高;干喷湿法纺丝T700级碳纤维实现工业化生产,但产品质量有待稳定;T800、M40J、M50J等高品质碳纤维仍在中试或攻关阶段。国际上碳纤维高端技术和产品对中国实行封锁,并利用高性能碳纤维盈利来弥补通用级碳纤维的亏损,对中国碳纤维市场进行降价打压,企图遏制中国碳纤维产业的发展。受国外低价倾销和恶意竞销行为影响,国内碳纤维企业基本处于全线亏损境地。

中国碳纤维发展需重点关注以下几个方面:一是组织技术攻关。重点解决T300级等中低端碳纤维产品稳定性和成本控制问题,加快T700级等中高端碳纤维产品产业化及高模量碳纤维研发,加强高品质油剂、上浆剂、树脂等辅助材料配套能力,加快预氧化炉和多段宽口碳化炉等设备研发。二是加强应用牵引。建立产学研用产业技术创新联盟,以应用需求为牵引,深化碳纤维生产与应用企业合作,实现优势互补。三是深化军民融合。加大满足国防发展需求的高端碳纤维及复合材料的研发力度,打破体制机制束缚,引导优势民企进入军品领域,加快提升碳纤维行业军民融合水平。四是推动标准体系建设。建立适合我国产业发展特点并与国际接轨的碳纤维标准体系,解决限制我国碳纤维下游应用瓶颈的标准和应用设计规范问题,逐步扩大国产碳纤维对进口碳纤维的替代。五是加强人才培养。培养一批高端生产和应用技术人才,推动“产学研用”产业链一体化发展。

参考文献

[1] 张婧,陈虹,于今,等. PAN基碳纤维原丝纺丝技术及其发展现状[J].高科技纤维与应用, 2013, 38(6):46-48.

[2] 严彬涛. 碳纤维产业化的瓶颈与路径[J].石油知识,2014(1):48-49.

[3] 汪星明,邢誉峰.三维编织复合材料研究进展[J].航空学报,2010,31(5):914-927.

[4] 杨超群,王俊勃,李宗迎,等.三维编织技术发展现状及展望[J].棉纺织技术, 2014, 42(7):1-5.

[5] 孙超明,张翠妙,谈娟娟,等. 国产RTM用碳纤维及环氧树脂基本性能研究[J].玻璃钢/复合材料,2013(9 ): 35-37.

[6] 任彦.碳纤维复合材料的回收与利用[J].新材料产业,2014(8):19-22.

[7] 芦长椿.全球碳纤维市场与技术的最新进展[J].纺织导报,2014(9): 44-48.

碳纤维复合材料范文第4篇

关键词:碳纤维水泥性能机理

中图分类号: TV42 文献标识码: A

0 引言

增强体在复合材料中起着增加强度、改善性能的作用,对复合材料的开发有着至关重要的影响。纤维作为有效的增强材料已被实践所证明,碳纤维作为最重要的纤维增强材料,具有高强度、高比模量等优良性能。尽管在价格方面相对较高,但近年经研究改进,提高了冲击韧性及热稳定性,价格也有明显降低,引起了世界各国的高度重视[1]。通过在水泥中掺入纤维来改善水泥力学性能已经发展成为水泥科学的重要领域。水泥中可以掺加钢纤维、聚丙烯纤维、秸秆纤维等,而碳纤维则以其特殊的优良性能得以脱颖而出。本文就碳纤维增强水泥基复合材料的发展概况、力学性能及增强机理方面做了一些研究和介绍,以便于更好的在工程中大规模推广使用[2]。

1 碳纤维性质及发展

碳纤维的开发历史可追溯到19世纪末,1959年美国联合碳化公司以粘胶纤维为原丝制成纤维素基碳纤维。之后,日本、英国等国家也相继研究出了新型的碳纤维,并逐渐应用于航空航天等领域。1997年至2000年,碳纤维的需求量随新应用领域的开发而成倍增长[3],日本和美国是既是最大的碳纤维生产国也是最大的消费国。目前各国都在降低碳纤维成本、开发配套生产机制及拓展市场方面做努力,今后碳纤维及其复合材料会更加高速稳定发展。但国内的情况却不容乐观,当前碳纤维的研制与生产水平还较低,与国外差距甚大,尚须做大量的实验研究[4]。

人们很早就研究、开发了钢筋、石棉及合成纤维等增强材料,但是它们都存在各种的缺陷。而碳纤维则具有超高的抗拉强度和弹性模量、化学性质稳定、与水泥基复合材料粘结良好等优点。水泥用碳纤维均匀分散后,在承受负荷时表面不再产生肉眼可见的龟裂,其拉伸强度和弯曲强度、弯曲韧性提高了几倍,其耐冲击性也得到了改善[5]。但是碳纤维价格昂贵,最近几年开发的短切碳纤维已使它们的价格大为下降,但是其价格仍然很高,限制了其应用。

2 力学性能

2.1抗压强度

碳纤维的掺入在一定程度上增强了水泥基体的抗压强度,掺量过多时反而使抗压强度有所下降。可见,碳纤维在水泥基材中的掺量尤其重要。

2.2抗拉强度

水泥基复合材料的抗拉强度的测定一般是通过劈拉法间接得出。任意分布的短切碳纤维在复合材料硬化过程中改善了其内部结构,减少了内部缺陷,提高了材料的连续性。受力过程中碳纤维与基体共同受力变形,碳纤维的牵连作用使基体裂而不断,进一步承受载荷,可充分保证水泥基材的抗拉强度[6]。

2.3抗裂性

在水泥基复合材料拌合初期,碳纤维构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;在硬化过程中,如果碳纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则碳纤维能承受更大的荷载,阻止隐微裂缝发展成宏观裂缝的可能。宏观上看,当基体材料受到应力作用产生微裂缝后,碳纤维能够承担因基体开裂转移给它的应力,基体收缩产生的能量被碳纤维所吸收,有效增加了材料的韧性,提高了其初裂强度、延迟了裂缝的产生[7]。

2.4抗渗性

内部孔结构是影响水泥基复合材料抗渗性的主要因素。碳纤维可以有效控制早期干缩微裂纹以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。另外,碳纤维起了承托骨料的作用,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,抗渗性得以提高。

2.5抗冲击及抗变形能力

碳纤维增强水泥基复合材料受拉(弯)时,即使基材中已出现大量的分散裂缝,但由于增强碳纤维的存在,基体仍可承受一定的载荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。

2.6抗冻性

碳纤维可以缓解温度变化而引起的水泥基复合材料内部应力的作用,从而防止水泥固化过程中微裂纹的形成和扩散,提高材料的抗冻性;同时,水泥基复合材料抗渗能力的提高也有利于其抗冻性能的提高。

综上所述,碳纤维在水泥基复合材料中能很好的改善材料的力学性能,但是需要注意的是碳纤维的性质、种类、掺入方式、掺量、长宽比等都与水泥基材最终的性能息息相关,必须综合考虑各项因素,优选出最适用的碳纤维[7]。

3 增强机理

传统水泥基材是典型的脆性材料,拉压比低,极限延伸率小,在受荷载之前已存在较多的微裂纹、气孔等缺陷。在受力过程中,裂缝尖端出现应力集中,裂缝急剧扩展,基体的承载能力下降,会发生脆性破坏。碳纤维跨接裂缝,分散应力到裂缝的上、下表面,一定范围内,随着纤维掺量的增加,裂缝尖端应力集中程度将趋于缓和,并可能消失。由于碳纤维的阻裂作用,复合材料的断裂韧性将得到提高,抗拉强度也随之出现增长。

在受力和初裂之前,碳纤维通过抑制基体的收缩,减少与缩小了裂缝源的数量和尺度;在碳纤维水泥基复合材料受力后达到初裂前,当应变达到普通基体的应变极限时,由于裂纹影响因素的改善,复合材料并不立即断裂,应变会继续上升直至基体开裂,从而复合材料的整体强度得到提高;复合材料开裂后,由于碳纤维的存在,还能继续承受载荷,复合材料强度将还会继续提高。

水泥砂浆、混凝土等复合材料材料在空气中因失水会引起收缩。而碳纤维的存在,在材料收缩的过程中发挥了重要的抑制作用,减小了材料的干缩程度,从而也很大程度上避免了因失水导致的收缩应力的产生。随着碳纤维含量的提高,这种效应将越明显。如果碳纤维含量相同,碳纤维长度较小,则根数相对较多,碳纤维的抑制作用要强一些[8]。

4 结论与建议

本文介绍了碳纤维的特性及发展历程,碳纤维由于自身的诸多优良性能,可以大大改善水泥基复合材料的抗拉、抗渗及抗冻等力学性能。碳纤维由于其阻裂作用,复合材料的断裂韧性、整体强度和抑制收缩能力得以提高。碳纤维及其复合材料的研发具有较高的投资效益,但是目前国内碳纤维的开发利用仍然存在一些问题,如由于国产碳原丝杂质含量较高,造成碳纤维性能不稳定;国产碳纤维目前售价太高,且品种单一,缺乏高性能的碳纤维;碳纤维在水泥基复合材料中的类型及掺量与水泥基材的性能有很大关系,如何合理选择最佳的碳纤维,最大限度的发挥碳纤维的增强作用是以后研究的重中之重。因此,引进低成本碳纤维生产技术,探索碳纤维的品种与掺量,研制高性能碳纤维,开发性能检测监控机制,扩大碳纤维的应用范围等势在必行。

参考文献:

[1] 贾哲,姜波,程光旭等. 纤维增强水泥基复合材料研究进展[J]. 混凝 土,2007(8): 65- 68.

[2] 赵稼祥, 碳纤维及其复合材料的发展与应用[J]. 石化技术与应用, 2002,20 (4):273 - 276.

[3] 马俊.纤维增强水泥基复合材料的新发展,[J]高科技纤维与应用2002.27(6)14-17.

[4] Z.J. Wang, J. Gao. T. Ai, et al. Quantitative evaluation of carbon fiber dispersionin cement based composites [J]. Construction and Building Materials 68 (2014) 2630.

[5] 李克智,王 闯,李贺军等,碳纤维增强水泥基复合材料的发展与研究[J].农业工程学报,2006,20 (5):85- 88.

[6] F.J. Baeza, O. Galao, E. Zornoza, P. Garcés. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites [J]. Materials and Design. 51 (2013) 10851094.

[7] Z.J. Wang. K.Z. Li. C. Wang. Freezingthawing effects on electromagnetic wave reflectivity of carbon fiber cement based composites [J]. Construction and Building Materials 64 (2014) 288292

碳纤维复合材料范文第5篇

关键词:复合材料车体;轻量化;轨道交通;成型工艺

碳纤维复合材料具有比强度高、比刚度高、耐腐蚀、抗疲劳、可设计性强、方便整体成型等特点,在航空、航天等领域已经获得成熟应用。随着高速铁路的快速发展,对车体轻量化的需求也越来越明显,应用复合材料制造的车体,具备重量轻、强度高、刚性大等特性,在有效地较低车体重量的同时,也提高了车体运行的平稳性和稳定性。

复合材料是一种各向异性的材料,在设计过程中具有很强的灵活性,设计人员可以从选材、成型工艺、结构设计等方面综合考虑,充分发挥复合材料比强度、比模量高的特性,在满足强度要求的同时,通过结构的优化计算,减少材料的使用,从而达到减重、降低成本的目的,为复合材料在轨道车辆领域的应用提供了可能。

复合材料车体和金属车体相比存在一些需要解决的问题:碳纤维复合材料成本比较高、工艺成型技术水平要求高;复合材料车体需要达到和金属车体一样的防火要求,泡沫、树脂、预浸料要做防火处理;复合材料车体需要考虑车体接地和电气设备接地问题;车体大部件之间的连接方式要考虑满足车体强度、使用寿命、整体密封等要求;复合材料车体应避免开孔,或者避免在碳纤维连续传力的区域开孔;复合材料车体小件需要选择合适的连接方式。

1 国内外复合材料车体应用概况

复合材料除广泛用于航空航天领域外,在轨道车辆制造业也有一定的应用。有些国家已将复合材料广泛地应用到轨道车辆上,如法国国营铁路公司(SNCF)使用复合材料O计出了TGV双层挂车,对其耐火性、抗冲击强度进行了运行试验,证实了复合材料车体制造工艺是有效的,实现了CFRP车体结构的重大突破。韩国TTX碳纤维复合材料整体车身也于2010年投入运营。Schindler Waggon公司应用玻纤或碳纤维缠绕制成的轻型承载结构车体在联邦铁路线上进行运行试验,运行速度达到140km/h,也达到了满意的效果。德国AEG和MBB与德国联邦铁路合作开发的世界上第一个复合材料转向架构架,在运营了100多万公里后未检测出任何磨损及损坏,与原结构相比不仅重量大大减少,同时也提高了运行舒适度、降低了检修成本。此外,复合材料在车厢内饰件以及车头前端领域的应用也比较广泛。

国内复合材料在轨道交通中应用还处于试验阶段,主要应用还受限于车头前端和车厢内饰件,复合材料在整车的应用上还处于研究阶段。

2 材料性能和成型工艺

碳纤维复合材料车体各部件主要采用碳纤维-芯层结构(类似于三明治结构),碳纤维-芯层结构主要由两层碳纤维蒙皮中间加入泡沫或蜂窝夹芯组成,碳纤维-芯层结构不仅具有质量轻、弯曲刚度和强度大,还具有耐疲劳性、隔音隔热等优点。在车体设计时,需要根据车体结构承载要求,在夹层内部预埋纵、横加强梁,或者在承载区域做局部加强,在不承力区域可以做适当减薄处理。

复合材料成型工艺主要有手糊成型、喷射成型、拉挤成型、缠绕成型、真空热压罐成型及真空导入成型等成型工艺。手糊成型虽然工艺简单、价格相对比较便宜,但是由于生产效率很低、质量不稳定等因素不适于生产结构件。喷射成型为使用短切纤维和树脂经过喷枪混合后,压缩空气喷洒在模具上,然后经过按压固化成型,可用于制造过程中的过渡层。拉挤成型适合于生产各种截面形状的型材,如工字型、槽型等截面型材。缠绕成型可用于制造圆柱体、球体、筒形等回转体结构。真空热压罐成型工艺,需要将预浸料在磨具中按照设计要求铺好后,送入热压罐中加温加压固化成型。这种成型工艺方法生产的产品韧性好、结构强度高、尺寸精度较高、工艺稳定性好,但是对温度控制、设备成本、工艺水平等要求比较高,制造成本比较昂贵,所以此种成型工艺只适用于制造车体的一些承力件,比如底架边梁、牵枕缓结构。真空袋压成型工艺的特点是既能获得相较于手糊工艺的高强度重量比和尺寸精度,同时和热压罐成型工艺相比制造成本相对较低,所以此种方法适合于车体大部件的设计。

以车体底架为例,车体底架整体采用复合材料夹层结构,选用热压罐成型工艺,成型步骤如下:模具准备;底架上蒙皮铺贴;底架上蒙皮固化成型;加入包裹胶膜的泡沫,同时可以加入预埋金属件或复合材料预制件;泡沫与底架上蒙皮整体成型;在泡沫结构上铺贴底架下蒙皮;整体固化。

3 复合材料车体关键问题研究

3.1 防火要求

复合材料选用的材料,如预浸料、树脂、粘接剂、泡沫,要满足轨道车辆的防火要求,如果选用的树脂、预浸料,不满足防火要求,需要加入防火材料,满足整体的防火要求。

3.2 接地和电磁兼容要求

金属车体可以导电,所以只需要将车体上的接地设备先连接到车体上,通过车体连入转向架轮对导入大地,复合材料车体为不良导体,需要对设备统一做接地处理,可以考虑在夹层内部预埋铜板,然后在设备需要接地的位置通过螺栓连接到铜板,最后将整个铜板通过转向架轮对导入大地。

电磁兼容要保证整车电磁兼容的要求,对于车下磁场较强部位,需要作隔磁处理。

3.3 刚度要求

由于碳纤维-芯层结构为各项异性材料,车体刚度要保证在正常载荷和自然频率下,车体变形不超过运行条件所决定的极限值,需要在车体结构设计时,选择合适比重的芯层结构,并在车体变形比较大的区域做局部加强。

3.4 车体大部件连接方式

碳纤维车体不能像金属车体一样通过焊接方式来连接车体大部件,需要考虑通过胶粘或者螺栓、铆钉等紧固件的方式进行连接,在考虑连接强度的同时,还要重点考虑整车寿命要满足设计要求,以及连接后整车的密封和防水要求。

3.5 开孔问题

复合材料车体在做系统设计时,应避免在承力区域开孔,否则可能导致碳纤维传力的不连续。

3.6 车体小件连接方式

复合材料车体由于无法焊接,小件只能通过胶粘或者紧固件连接,小件材质若为金属材质,还要在复合材料夹层中预埋金属板,然后再通过紧固件进行连接。

4 碳纤维复合材料车体在轨道车辆领域的可行性分析

碳纤维复合材料车体主要受几方面的制约,主要包括:碳纤维材料成本比较高、成型工艺要求比较高、设计者需要具备一定的设计经验、量产料件如何保证工艺稳定性和产品质量。

碳纤维复合材料车体的应用还处于初级阶段,针对复合材料的设计准则、工艺规范、材料标准、产品检验和试验验证等工作还没有建立或完善,需要大量的试验研究和试验验证工作。这些因素也阻K了碳纤维复合材料在轨道交通领域的发展。

碳纤维复合材料车体如果想要在轨道交通领域很好的应用,就要在以下几个方便做考虑,首先材料选择上可以考虑在次承力结构上采用玻纤和碳纤混杂设计,充分发挥碳纤维材料强度高,玻纤价格便宜的优势,将减重和降低成本整体考虑;其次在设计过程中,考虑结构优化、系统集成,在提高复合材料隔声隔音前提下,就可以考虑将车体结构、内装结构集成在一起,去除防寒和隔音材料,这样就可以大幅度较少整车重量、降低成本;最后一定要优化工艺成型技术,简化工艺过程、提升工艺稳定性、提高生产效率。

5 结束语

随着对碳纤维复合材料研究的深入,逐步解决碳纤维复合材料车体设计中存在的问题,碳纤维复合材料在轨道车辆车体上的应用也会越来越广泛。

参考文献

[1]Kim J S,Jeong J C. Natural frequency evaluation of a composite train carbody with length of 23m[J].Composites Science and Techbology,2006,66(13).

[2]丁叁叁,田爱琴,王建军,等.高速动车组碳纤维复合材料应用研究[J].电力机车与城轨车辆,2015(38).

[3]Kim J S,Lee S J,Shin K B. Manufacturing and structural safety evaluation of a composite train carbody[J].Composite Structures,2007,78(4):468-476.

[4]李天亮.碳纤维复合材料在轨道客车上应用前景分析[J].装备制造技术,2016(4).

碳纤维复合材料范文第6篇

关键词:碳纤维;复合材料;力学性能

本文以碳纤维增强热塑性树脂基复合材料为研究对象,对相关的概念和内容进行了梳理和总结。其中概括了碳纤维的性质性能,对复合材料的概念进行了阐述,最后对碳纤维增强热塑性树脂基复合材料的力学性能作了详尽的分析说明。

1.关于碳纤维增强热塑性树脂基复合材料的概述

⑴复合材料的概念:面对传统、单一组分的材料已经难以满足现在应用需要的现实状况,开发研制新材料,是解决这个问题的根本途径。运用对材料改性的方法,来改善材料的性能是可取的。而材料改性的方法中,复合是最为常见的一种。国际标准化组织对于复合材料的概念有明确的界定:复合材料是指由两种或两种以上不同化学性质和物理性质的物质组成的混合固体材料。它的突出之处在于此复合材料的特定性能优于任一单独组分的性能。⑵复合材料的分类简介:复合材料的有几种分类,这里不作一一介绍。只介绍两种与本论文相关的类别划分。如果以基体材料分类,复合材料有金属基复合材料;陶瓷基复合材料;碳基复合材料;高分子基复合材料。本文讨论的是最后一种高分子基复合材料,它是以有机化合物包括热塑性树脂、热固性树脂、橡胶为基体制备的复合材料。第二,如果按增强纤维的类别划分,就存在有机纤维复合材料、无机纤维复合材料、其他纤维复合材料。其中本文讨论的对象属于无机纤维复合材料这一类别,因为碳纤维就是无机纤维复合材料的其中一种。特别值得注意的是,当两种或两种以上的纤维同时增强一个基体,制备成的复合材料叫做混杂纤维复合材料。实质上是两种或两种以上的单一纤维材料的互相复合,就成了复合材料的“复合材料”。

2.纤维增强树脂基复合材料的性能特点

纤维增强树脂基复合材料是指以高分子聚合物为基体材料,用纤维作增强材料复合制备而成的。基体材料和增强材料必然各自发挥自己的优势作用。之所以用纤维作增强材料是因为纤维具有高强度和高模量的优点,所以是承载体的“不二人选”。而采用高分子聚合物作基体材料,是考虑其良好的粘接性能,可以将纤维和基体牢固的粘连起来。不仅仅如此,基体还需发挥均匀分散载荷的作用,通过界面层,将载荷传递到纤维,从而使纤维承受剪切和压缩的载荷。当两者存在良好的复合状态,并且使结构设计趋于最佳化,就能最大程度上发挥复合材料的综合性能。⑴抗疲劳性能好:所谓疲劳破坏指的是材料在承受交变负荷时,形成裂缝继续扩大而引起的低应力破坏。纤维增强树脂基复合材料的疲劳破坏的发生过程是,首先出现裂缝,继而裂纹向进一步扩大的趋势发展,直到被基体和纤维的界面拦阻。在此过程中,纤维的薄弱部位最先被破坏,随之逐渐扩延到结合面。因此,纤维增强树脂基复合材料在疲劳破坏前存在明显的征兆,这与金属材料的疲劳发生截然不同。这也是它的抗疲劳性能好的具体表现。⑵高温性能好:纤维增强树脂基复合材料具有很好的耐热性能。将材料置于高温中,表面分解、气化,在吸热的同时又冷却下来。材料在高温下逐渐消失的同时,表面又有很高的吸热效率。这些都是材料高温性能卓越的物理特征。⑶高比强度和比模量:纤维增强树脂基复合材料具有高比强度和高比模量的特征。甚至在和钢、铝、钛等金属材料相比,它的力学性能也十分出色。这种材料在宇航工业中,受到极大的应用。⑷安全性能好:纤维增强树脂基复合材料中分布的纤维数量巨大,并且密度强,用数据来说明的话,每平方厘米的复合材料上的纤维数量少则几千根,多则达到上万根。即便材料超负荷,发生少量纤维的断裂情况,载荷也会进行重新分配,着力在尚未断裂的纤维部分。因此,短时间内,不会影响到整个构件的承载能力。⑸设计的可操作性强:当复合材料需要符合性能和结构的设计需求时,可以通过很多方法来实现。包括改变基体和纤维的品种,调整它们的含量比例,也可以通过调整纤维的层铺结构和排列方式来实现。因此,可以说,纤维增强树脂基复合材料有很强的设计可操作性。⑹成型工艺简单易成:成型工艺过程十分简单易成,因其制品大多都是整体成型,无需使用到焊接、切割等二次加工,工艺流程简单好操作。一次性成型不仅可以减少加工的时间,同时减少了零部件、紧固件、接头的损耗,使结构更趋于轻量化。⑺减震性能好:高的自振频率可以对工作状态下的早期破坏起到规避和防范的作用。自振频率和材料比模量的平方根成正比,和材料结构也息息相关。纤维增强树脂基复合材料的基体界面和纤维因为具有吸振能力,所以能够起到很好的减震效果。

3.碳纤维增强热塑料树脂基复合材料中碳纤维的性质

⑴对纤维的分类:纤维存在有机纤维和无机纤维之分。增强纤维共有五大类别,分别是:硼纤维、碳纤维、碳化硅纤维、氧化铝纤维以及芳纶纤维。除最后一种芳纶纤维以外,其他四种都属于无机纤维。碳纤维是五大纤维之冠,是增强纤维中最有活力的一种。碳纤维复合材料种类很多,但是应用最广泛的还要属碳纤维增强树脂基复合材料。⑵碳纤维的性质和性能:碳纤维是纤维状的碳素材料,它的性质包括导热、导电、耐温、耐磨、比重小且耐腐蚀性等。除此之外,它的性能也相当突出,具有热膨胀系数小、抗震动衰减、自性以及防原子辐射等。因为碳纤维的纤维属性,因此可以对其编制加工,缠绕成型。利用纤维状直径细的特点,是制成复合材料杂曲面构件部件的绝佳材料。碳纤维能够成为最有活力的增强纤维,它密度低,抗拉伸强度可以和玻璃纤维比肩,而碳纤维的弹性模量却是后者的4到5倍。在惰性气氛中,碳纤维的抗拉强度随温度的升高而攀升,表现出极佳的性能。因此,不得不说碳纤维是复合材料增强纤维的首选。⑶碳纤维的力学性质:碳纤维的力学性质主要通过轴向抗拉模量来体现。当热处理温度上升,碳纤维的模量随之攀升。细直径纤维在预氧化过程中,发生碳化,产生很多排列整齐的饿表皮结构。这些结构对碳纤维模量的增加又起到推波助澜的作用,促使它的模量进一步提高。碳纤维模量的变化趋势以施加负荷的方式作为判别标准,不是随应变的增加而增加,就是随应变的增加而下降,无非是这两种情况。

4.纤维增强热塑性树脂基复合材料的力学性能研究

⑴纤维增强树脂基复合材料的力学性能①拉伸性能:单向增强树脂基复合材料,沿纤维方向的拉伸模量跟纤维体积含量的增大成正比增加。但是如果采用的是短切纤维和玻璃布增强的材料层合板,拉升强度和拉升模量就不与纤维体积成正比增加,但是仍然保持随纤维体积增加而提升。通常情况下,复合材料的纤维方向的主弹性模量,双向是单向的0.5-0.55倍。而混杂纤维增强树脂基复合材料的弹性模量是拉伸模量的0.35-0.4倍。②压缩性能:树脂基复合材料的压缩性能由基体材料的质量决定,拉伸性能由纤维增强材料的质量决定。因此,要想提高树脂基复合材料的压缩性能,就得立足于选用抗压强度较高的树脂基体。纤维树脂基复合材料的压缩特性和拉伸特性存在相似性,在应力小,纤维未压弯的条件下,压缩弹性的模量接近。③弯曲性能:增强树脂基复合材料的弯曲性能受几个因素的影响,具体包括纤维增强材料的种类、铺层方式和纤维织物种类。如果这三点不同,弯曲性能就不尽相同。当纤维增强树脂基复合材料的破坏发生时,破坏首先出现在增强纤维与基体材料的界面上,其次是基体材料的破坏,最后出现在增强材料。④剪切性能:纤维增强树脂基复合材料的剪切强度主要和三个因素密切相关。其中包括:第一,纤维树脂界面粘接强度;第二,基体树脂强度;第三,纤维的含量。通过实验可以证明,复合材料的剪切弹性模量随着纤维含量的增大而呈上升趋势。⑵纤维增强树脂基复合材料的力学性能的特点纤维增强树脂基复合材料的力学性能特点可以简单归纳为四点。第一,比强度高;第二,其力学性能呈现明显的方向差异性;第三,弹性模量和层间剪切强度低;第四,性能分散性大。⑶界面对复合材料的力学影响界面将基体和纤维连接成一个整体,并成为应力传递的桥梁。纤维与基体的相容性会影响到界面的完整性。如果相容不好,形成界面不完整,就会影响到应力的传递。因此,完整的界面层是保证复合材料界面层均匀应力传递,凸显优异性能的前提。对于复合材料的性能呈现,界面发挥着不可替代的作用,直接影响着复合材料的力学性能。牢固而完好的界面结合层,是可以大大提高复合材料横向拉伸程度和层间拉伸程度的。同样的,它也可以恰如其分地提高复合材料的横向及层间拉剪切模量和伸模量。碳纤维实际上是一种韧性较差的纤维,当连接基体和纤维的界面是脆性的,断裂应变小,强度大的情况下,纤维很脆,断裂了,就直接导致裂纹顺着纤维的方向持续扩展,周边的纤维受到影响也相继断裂。由此可以推断,纤维增强复合材料的韧性不好。如果在此情况下,如果界面的结合强度不高,那么纤维断裂就会引起裂纹断裂的走向,沿界面扩展,在扩展路径中,凡是遇到纤维的缺陷部位和薄弱地段,裂纹自然的越过纤维,仍然沿界面扩展,最后就形成了曲曲折折的断裂途径。通过以上分析,不难看出,如果遇到基体、界面的断裂应变低值的情况,采取改善断裂韧性的措施,减弱界面强度,提高纤维延伸率是十分有效的办法。关于碳纤维增强复合材料的研究目前主要集中在几点上。包括有:不同基体的成型工艺、碳纤维、力学性能、界面层设计、界面层性能等。由于碳纤维增强复合材料有很高的综合性能优势,因此,目前该课题的研究仍然是活跃而兴兴向荣的。它吸引了很多对该课题感兴趣的学者的目光,国内外一些学者也投入其中,作了大量的研究,其中不乏有一些值得借鉴的思路和火花。就现在的情况而言,碳纤维增强热塑料树脂基复合材料的研究大多指向电性能,而在成型工艺、力学性能的关注和研究颇少。探索是永无止境的,而探索精神永远引领人们寻找真理。

碳纤维复合材料范文第7篇

[关键词]碳纤维复合材料;特性;应用

1、引言

碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,主要作为增强材料与树脂、金属、陶瓷等基体复合制成结构材料,其比强度、比模量综合指标在现有材料中是最高的,力学性能颇具优势,所以被广泛应用于各个领域。

2、碳纤维材料的特性

碳纤维主要是由碳元素组成的一种特殊纤维,由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的,其含碳量随种类不同而异,一般90%以上,不仅具有一般碳素材料的特性,又兼具纺织纤维的柔软可加工性,但仅依靠碳纤维片本身并不能充分发挥其强大的力学特性及优越的耐久性能,只有通过环氧树脂将碳纤维片粘附于钢筋混凝土结构表面并与之紧密结合才能达到补强的目的,具体具有以下特性:

(1)沿纤维轴方向有很高的强度,碳纤维的拉伸强度为2~7GPa,约为钢材的10倍,其树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为230~430Gpa亦高于钢,经应力疲劳数百万次的循环试验,其强度保留率仍有60%,而钢材为40%,铝材为30%,玻璃只有20%~25%,所以所取安全系数为最低,但碳纤维的径向强度不如轴向强度,剪断强度弱,耐冲击性差;

(2)非氧化环境下具有突出的耐热性能,可以耐受2000℃以上的高温,碳纤维要温度高于1500℃时强度才开始下降,而且温度越高,纤维强度越大;

(3)外形有显著的各向异性、柔软,可加工成各种织物、毡、席、带、纸及其他材料;

(4)热膨胀系数小,变形量小,结构尺寸稳定性好;

(5)具有极好的纤度,一般仅约19g,密度约为1.5~2g/cm3,比重比铝还要轻,重量约为钢材的1/5,比强度却是铁的20倍;

(6)耐腐蚀性好,碳纤维的成分几乎是纯碳,而碳又是最稳定的元素之一,除强氧化酸以外,能在各种有机溶剂、酸、碱中不溶不胀,不存在生锈问题;

(7)耐磨性好,与金属对磨时,损耗很少,可制成高级的摩擦材料。

3、碳纤维在各领域的应用

据报道航天飞行器的重量每减少1Kg,就可使运载火箭减轻500Kg,所以在航空航天工业中争相采用先进复合材料,由碳纤维和环氧树脂结合而成的复合材料,因其比重小、刚性好和强度高而成为火箭、卫星、导弹、战斗机和舰船等尖端武器装备中必不可少一种先进材料。将碳纤维复合材料应用在战略导弹的弹体和发动机壳体上,可大大减轻重量,提高导弹的射程和冲击能力;碳纤维应用在舰艇上可减轻结构重量,增加舰艇有效负载,从而提高运送作战物资的能力;在飞机上大量应用碳纤维环氧复合材料能够减轻重量、节省燃油、降低排放、减少温室气体的排放;用碳纤维制作的耳机重量轻、强度好,既能减轻头部压力,又提高了人员佩戴的舒适性。

在土木建筑领域,碳纤维也应用在工业与民用建筑物、铁路、公路、桥梁、隧道、烟囱、塔结构等的加固补强,具有密度小、强度高、耐久性好、应变能力强、抗腐蚀能力强的特点,可耐酸、碱等化学品腐蚀, 柔韧性佳。用碳纤维管制作的桁梁构架屋顶, 比钢材轻50%左右, 使大型结构物达到了实用化的水平,而且施工效率和抗震性能得到了大幅度提高, 碳纤维做补强混凝土结构时, 不需要增加螺栓和铆钉固定, 对原混凝土结构扰动较小, 施工工艺简便。

在运动休闲领域中,像球杆、钓鱼竿、网球拍、羽毛球拍、自行车、滑雪杖、滑雪板、帆板桅杆、航海船体等运动用品都是碳纤维的主要用户之一。体育应用中的重要应用为球棒和球拍框架,全世界40%的球棒都是由碳纤维制成的,全世界碳纤维钓鱼杆的产量约为每年2000万副,网球拍框架的市场容量约为每年600万副,碳纤维还应用在划船、赛艇等其它海洋运动中。

日常用品中音响、浴霸、取暖器,远红外理疗产品等家用电器以及手机、笔记本电脑等电子产品都会应用到碳纤维。

4、结束语

由于碳纤维复合材料具有轻而强、轻而刚、耐高温、耐腐蚀、耐疲劳、结构尺寸稳定性好、设计性好以及可大面积整体成型等诸多优点,已在航空航天、国防军工和民用工业领域得到广泛应用。据《2013-2017年中国碳纤维行业深度调研与投资战略规划分析报告》数据显示我国是碳纤维需求大国,2011年碳纤维市场规模达到6811.22吨,然而受供应不足的影响,国内碳纤维市场发展相对较为缓慢,预计未来几年,随着供应量的提升以及宏观经济的整体性好,我国碳纤维行业的需求量也将保持着较快速度的增长,不过国产碳纤维落后的技术却成为制约着我国碳纤维行业健康稳健发展的“拦路虎”,这直接导致我国碳纤维产品质量与进口产品之间的明显差距,也极大地限制了国产碳纤维产品在高端领域的应用,目前我国碳纤维产品在应用上集中于低端领域,在碳纤维质量要求较高的航空航天领域的应用比例仅为3%,远远没达到国际上碳纤维行业在航空航天领域应用占比的平均水平,而在质量要求相对较低的运动休闲用品领域,碳纤维的应用比例却高达80%左右,四倍于国际上碳纤维在运动休闲用品领域应用的平均水平,随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力提高碳纤维的生产工艺技术水平。

参考文献

[1]Doug Smock.准备迎接碳材料革命.美国 技术专题

[2]钱伯章,朱建芳.碳纤维复合材料在航空和汽车领域中的应用.中国 化学新型材料,2007-12-03

碳纤维复合材料范文第8篇

【关键词】复合材料 混合模式 弯曲试验 声发射

1 前言

随着碳纤维复合材料在高压容器,航空航天等领域应用的逐渐深入,复合材料损伤机理分析及整体完整性检测也在大量开展[1-3]。层合复合材料的层间结合较弱,分层敏感性成为许多先进复合材料的主要弱点[4-9]。因此,评价复合材料抵抗分层的能力问题倍受人们关注。本文研究了典型的碳/环氧复合材料的Ⅰ/ Ⅱ混合模式分层行为和层间断裂韧性,同时采用美国PAC公司的声发射设备进行全过程采集声发射信号,并对如计数,能量等参量及波形进行了分析,结合材料的力学性能讨论了复合材料损伤行为与AE信号特征的对应关系,为AE技术在复合材料损伤机理研究和安全性能评估方面提供参考。

图1?试验装置

2 试验部分

2.1 混合模式弯曲试样

试验采用浙江大学提供的碳纤维[0/90]4s复合材料,编号为5-1-1、5-1-2,试样尺寸150×20×3,试件一端切除长25mm的缺口,可以形成张开和剪切两种分层形式,同时几何中面埋入长50mm、厚0.02mm 的聚四氟乙烯薄膜,形成预制分层。

2.2 试验设备及方法

采用MTS 810型材料试验机对试样进行加载,速率为1mm/min。声发射仪为PAC的 samos-48,AE参数设置为峰值定义时间50μs,撞击定义时间200μs,撞击闭锁时间300μs,门槛值40dB。耦合剂为真空脂,将R15I型传感器缠绕固定在试样一端,试验装置如图1所示:

3 分析讨论

3.1 力学性能分析

试样在加载过程中,缺口侧预制分层逐渐张开,铺层间存在分层张力,同时由于上下铺层间弯曲变形的不协调性,层间存在剪切应力。

研究表明此碳纤维复合材料的分层扩展行为属于脆性的分层断裂,如图2所示。加载开始,随着位移的增加载荷直线增长,呈现一个很好的线性加载阶段a(0-95s);它反映了分层层间的基体和界面中微损伤的累积,分层力为层间剪切力; 当载荷超过到层间剪切的临界值,层间发生微观错动; 有一个微弱的非线性过程b(95-160s),期间分层间纤维,粘结面不断受张开拉力,剪切力陆续断裂,此刻宏观观测到层间已发生相对错动,预制薄膜分层逐渐张开,载荷略有下降。此后发展着一个可控制的稳定的分层扩展过程c,即位移继续增加,分层平稳地张开,位移停止,分层张开随即中止,可看到分层沿着试样弯曲切线方向逐渐张开,分层为张开拉力所致。

图2?位移-载荷曲

3.2 声学特性分析

图3为试样5-1-2的时间-能量曲线图,可以看出0-95s(a阶段)为低能量持续性信号,说明此阶段层间的基体和界面中微损伤的不断积累,释放微弱信号。95-160s(b阶段)持续产生中等能量的撞击,可解释为达到层间剪切的临界值后分层界面开始错动,可观测到上下铺层沿着预制薄膜分层逐渐张开,部分短纤维束,粘结剂受剪切力,张开拉力等因素陆续断裂,释放一定能量的信号。随着试件的进一步弯曲(c阶段),分层前沿不断前移开裂,更多的短纤维被拉断,

上下铺层沿着预制薄膜处逐渐分层,张开,更多的长纤维束被拉断,258s时分层开裂至加载点,下铺层与弯曲曲线相切,这个阶段集中释放了大量高能量信号。

从两个试件的时间-计数、时间-能量关系图4中也能看出曲线存在(95s、160s)2个拐点,三个阶段与图2、3中a、b、c阶段相对应,通过拐点可判断试样的受力状态及分层内部的活动状态。

图4?时间-计数-能量曲线

复合材料混合模式分层的声发射源可简化为纤维拉伸断裂、层间剪切错动摩擦,界面脱胶三种形式。图5为试样的持续时间-能量-幅值的散点分布图,可以看出撞击信号分为两个典型的区域。Ⅰ区为小于50dB的低幅值、低能量,能量与持续时间不成比例的撞击信号,是因为层间微弱剪切错动,相互摩擦,界面脱胶所释放的声波在高频区域能量较小,幅值很低,信号单一。Ⅱ区为能量与持续时间成正比的,幅值较高且分布广泛的信号,可解释为纤维断裂所释放的高频断裂信号,信号特征较集中。

图5?持续时间--能量―幅值曲线

4 结论

(1)通过力学性能测试发现碳纤维复合材料混合模式分层阶段为剪切分层,混合分层,张力分层过程;

(2)通过对分层信号分析可有效的监测其内部活跃情况,剪切分层信号能量,幅值很低,混合分层信号幅值较大,能量与持续时间成正比,张力分层时期为典型的纤维断裂信号,信号特征教集中;

(3)声发射信号曲线与力学性能曲线有一致的对应关系和吻合,通过对撞击信号深入分析可有效的判断材料内部分层的转换拐点,内部活跃程度,分层模式,为材料性能研究提供有力的理论支持。

参考文献

[1] 贺福,孙微.碳纤维复合材料在大飞机上的应用[J].高科技纤维与应用.2007,6:5-17

[2] 林德春,等. 纤维复合材料在航空航天领域的应用[J]. 玻璃钢,2007,(1):18-28

[3] Sato N,Kuraychi T,Kamigaito O. Fracture mechanisms of unidirectional carbon reinforced epoxy resin composite[J]. J. Mater. Sci. 1986,21(3):1005-1010

[4] Benevolenski O I,Karger-Kocsis J,Czigdny T.Mode I fracture resistance of glass fiber matrenforced poly propylene composites at various degree of consolidation [J]. Composites Part A,2003,34(3):267-273

[5] De Groot P J,Wijnen P A M,Janssen R B F. Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites[J]. Compos. Sci. Technol.1995,55(4):105-412

[6] Giordano M,Calabro A,Esposito C. An acoustic emission characterization fo the failure modes in polymer composite materials [J]. compos. Sci. Technol.,1990,37(3):411-428

[7] 许凤旌. 声发射技术在复合材料发展中的应用[D] . 上海:中国科学院上海冶金研究所,2000,2-10

[8] 皇甫劭炜,童小燕,姚磊江,等.复合材料层合板损伤的声发射试验研究[J].机械科学与技术,2009,28(5):699-673

碳纤维复合材料范文第9篇

关键词 碳纤维;复合材料;雷电防护

中图分类号V2 文献标识码A 文章编号 1674-6708(2013)102-0097-03

0引言

飞机的防雷击设计包括全机防雷击系统和部件级防雷击系统两部分。而防雷击设计的首要环节是进行雷电区域的正确划分,从而根据不同的雷电区域采取不同的防护措施。本文主要提供一种全碳纤维复合材料飞机的全机防雷击系统设计,部件级防雷击系统的设计本文不做分析。

1 飞机雷击环境定义

1.1飞机的雷击环境

直接雷击——指开始接触到飞机表面的雷击。

扫掠雷击——指一旦飞机接触到直接雷击后,雷击持续放电的接触点不断出现顺气流方向沿飞机表面跳跃移动。

1.2飞机的雷电效应

雷电直接效应是由雷电电弧的附着及伴随着雷电流的高压冲击波和磁力所造成的燃烧、熔蚀、爆炸和结构畸形。

雷电间接效应是指在电子、电气设备和布线中雷电引起的过电压和过电流造成的设备损坏或干扰。

3 飞机雷电区域划分

3.1区域划分

按照不同的雷电附着特性或传递特性可把飞机表面划分成三个区域:

区域1:初始电击附着其上面(进口或出口)可能性很大的飞机表面。亦称初始附着区域。

区域2:电击放电被气流从区域1的初始附着点吹过来在其上面扫掠的可能性很大的飞机表面,亦称扫掠冲击区域。

区域3:除了区域1和区域2以外的所有飞机表面为区域3。在区域3,放电电弧直接附着的可能性很小,但它可能在某对初始雷电附着点或扫掠冲击附着之间传导很大的雷电流。

按照放电长时间悬停在飞机表面的可能性大小,区域1又进一步分为A区、B区和C区,区域2划分为A区和B区。A区是电弧在它上面长时间悬停可能性较小的区域。B区是电弧在它上面长时间悬停可能性较大的区域。

3.2区域的确定

飞机雷击区域的划分按照SAE ARP5414A-2005进行,采用推荐的或标准的经典规则确定。

3.2.1区域1的确定

首先,要确定可能的初始雷电附着点区域。一般传统布局的飞机,根据飞机的雷击经验,典型的雷电先导初始附着点位置为一些末端,如机头、机翼/尾翼翼尖、推进器和螺旋桨桨叶的末端、发动机舱以及其他明显的突出物。

其次,确定区域1A、1B、1C的位置,根据SAE ARP5414A-2005,在正常情况下,飞机将会往前飞行,当冲击和闪电从前端的附着点开始从头到尾的扫过,开始形成第一个回流冲击。这一时间飞机飞行距离决定了区域1A表面相对于初始附着点的延展部分,这个距离由飞行速度、飞机离地面的海拔高度(对于从云端到地面的冲击)以及先导速度决定。区域1A延展部分的起点应该是飞机初始附着区域的端点。

3.2.2区域2的确定

区域2:

1)从区域1的直接雷击接触点向后有扫掠雷击可能性的表面为区域2,在区域1的前、后边界侧向内大约0.5m范围内的表面;

2)区域1C之后机身表面为区域2A;

3)垂尾、平尾区域1以外的为区域2A;方向舵、升降舵为区域2B。

3.2.3区域1、2的横向扩张位置的确定

对于机翼和尾翼处,确定区域1的办法是确定突出的弧形部分的水平切线,然后沿着切线往里延伸大约0.5m,区域1往里延伸大约0.5m的表面区域应该放在区域2中考虑。

3.2.4区域3的确定

不属于区域1和2的表面,并且不可能有闪电附着的地方划分为区域3。

3.3飞机雷击区域划分示意图

飞机的雷击区域的位置都是由飞机的几何特性和飞机的飞行特性来确定的。飞机雷击区域的最终确定将由飞机雷击附着点试验得到。图1为某型号单发涡桨轻型公务机雷击区域的初步理论划分示意图。

4雷电防护设计

飞机结构的设计应该是在飞机遭遇雷击时能为雷电流提供低阻抗的通路。对于容易受到雷击放电损坏的飞机结构、系统和部件如飞机的机头、翼尖、螺旋桨、发动机、燃油箱、活动翼面、风挡、天线等部件,必须根据其自身重要性以及所在区域的要求采取必要的雷电防护措施,以尽可能避免或减小雷电对飞机及设备自身的损害。

4.1 全碳纤维复合材料机体的雷击防护

资料显示,对复合材料机体进行模拟雷击试验,在没有雷击防护层的情况下,在经受60~100kA峰值电流和1.9C电荷量放电后就产生严重损伤,说明应用复合材料的飞机必须进行雷击防护。

据了解,目前国内外多数复合材料的飞机均使用金属丝网作为雷击防护层,可用标准纺织工艺将金属丝织成布或针织品。全碳纤维复合材料飞机使用铜网作为雷击防护层。根据模拟雷击试验结果,具体防雷击方案为:

1)对机雷击区域1,可用铜丝网做复合材料的表面防护层。铜丝网的网眼数不小于20×40孔/in2,铜丝直径至少为0.14mm;

2)对机雷击区域2,可用铜丝网做复合材料的表面防护层。铜丝网的网眼数不小于20×40孔/in2,铜丝直径至少为0.1mm。

4.1.1位于雷击区域1的全碳纤维复合材料机体的雷击防护

用于雷击区域1的复合材料雷击防护层必须能经受200kA的高电流冲击和500C电荷量的传输。处于雷击区域1的全碳纤维复合材料结构的防雷击设计可在复合材料制件的外表面上铺一层铜丝网,一次固化成制件,或将铜丝网用胶粘剂粘到复合材料制件的外表面上。铜丝网规格为:网孔数不小于20×40孔/ in2,铜丝直径至少为0.14mm。

4.1.2位于雷击区域2的全碳纤维复合材料机体的雷击防护

用于雷击区域2的复合材料雷击防护层必须能经受100kA的高电流冲击和传输200C的电荷量。处于扫掠雷击的复合材料结构雷击防护设计可采用在复合材料制件表面上粘一层铜丝网。铜丝网的规格为:网孔数不小于20×40孔/ in2,铜丝直径至少为0.1mm,若有天线安装的部位,为防止趋肤效应,铜丝直径至少为0.14mm。

4.2全碳纤维复合材料整体油箱的雷击防护

对于复合材料整体油箱,雷电防护设计是复合材料整体油箱设计中的关键技术之一。雷击过程中的高电压、大电流、大电量(持续高电流)对复合材料整体油箱危害极大。因此,在复合材料整体油箱设计之初,就应选择雷电防护系统。

4.2.1全碳纤维复合材料整体油箱防雷击设计的主要原则

1)复合材料整体油箱应布置在飞机遭受雷击概率较小的区域,如雷击区域2或3,尽量布置在3区。对机翼整体油箱来说,应布置在机翼的根部或中部;

2)在复合材料整体油箱的外表面应该为雷击电流构建通道,这些通道应与飞机的雷击电流传输通路有良好的电连接;

3)在油箱区,凡存在燃油、燃油蒸汽和空气混合气体的空间,不得因雷击产生放电火花。

4.2.2全碳纤维复合材料整体油箱外部的雷电防护设计

由于复合材料整体油箱的上、下壁板是飞机机体结构表面的一部分,因此其雷电防护的设计思路及外表面雷电防护方法与复合材料机体的雷电防护相同。

4.2.3全碳纤维复合材料整体油箱内部的雷电防护设计

1)金属紧固件尾部及连接细节雷电防护设计:当结构材料允许雷击电流通过结构骨架传导时,容易在紧固件尾部或紧固件与骨架连接处产生放电火花,为此需用密封胶覆盖、用专用防护帽的方法或其他可靠的方法保证不产生放电火花;

2)复合材料紧固件:在满足强度要求并能提供充足的紧固件品种规格和工艺保证的前提下使用。可避免将雷击电流导入油箱内部,从而避免火花的出现;

3)油箱内的金属构件:复合材料整体油箱内部应尽量避免有金属构件。对于不可避免的金属构件应通过搭接线与飞机金属结构保证良好搭接,并要防止内部导体电晕和流光。

4)油箱内部的部件和结构设计应做到:当雷击电流通过油箱时,不会在油箱内部产生任何可能点燃燃油蒸汽的火花。

4.3设备的雷电防护

对于设备,根据设备所执行的功能,要求设备厂商必须参照符合设备预期用途以及在飞机上安装要求的试验电平和波形对设备进行试验,具体要求根据RTCA /DO 160F 第22章进行。

对于安装在飞机外部的设备,还需要设备厂商进行雷电直接效应试验,用于确定外部安装设备耐受雷击直接效应的能力,施加于外部安装设备的试验类型和严酷等级取决于设备指定的类别。指定的设备试验类别应与设备安装位置所在的雷电放电区域相符合,具体要求根据RTCA /DO 160F 第23章进行。

4.4雷电间接效应防护

飞机内电子电气系统和部件(全机用电设备,包括发动机电气、操纵系统等),可能会因为雷击引起过电压和过电流造成损坏或干扰的,要进行雷电间接效应防护。由于全碳纤维复合材料飞机的屏蔽能力比金属飞机差,所以雷电间接效应的防护更加重要。

雷电间接效应通常以两种形式出现:

1)雷电通过天线、空速管加温线、航行灯导线、金属操纵线系及各种金属管路等,将雷电电流直接引入飞机,可能出现浪涌电压;

2)沿着机体流动的雷电电流在飞机线路中、金属操纵线系、各种金属管路中产生的感应电压和电流。

4.4.1明确设备防护的要求

关于电子电气设备的雷电间接效应防护要求:

1)不得造成物理损坏;

2)不得产生立即危及飞机及其机组人员安全的干扰,或产生严重妨碍飞机任务完成的干扰。

系统和部件的雷电关键类别取决于其自身对飞机的重要性、所在的雷电分区以及雷电的敏感性。根据飞机的机体结构、蒙皮材料、电磁“窗口”大小(如外部非金属区)设备的安装部位、导线的布置、设备接口进行分析,确定瞬态控制等级(TCL)和设备瞬态设计等级(ETDL)。关键设备、分系统根据RTCA /DO 160F 第22章进行试验。RTCA /DO 160F 第22章试验波形等同SAE ARP5412A-2005的相关试验波形。

4.4.2选择设备的最佳安装位置

设计过程中,尽量将电子设备布置在雷电产生的电磁场最弱的区域,采取的主要措施有:

1)电子设备尽量远离门、窗、口盖等开口处。对于安装在驾驶舱、起落架舱、机翼前后缘、尾段等相对敞开区域的设备,采用金属机箱屏蔽,对于含有数字电路和模拟电路的设备如靠近挡风板或窗口的,最好用壁厚大于1mm的铝合金做成电磁屏蔽盒;

2)尽可能将电子设备布置为朝向飞机结构的中心,而不布置在飞机外蒙皮;

3)设备安装的设备架上能为电子设备提供接地面且与飞机接地网有良好的搭接;

4)金属线系和管路应有良好的搭接。

4.4.3选择线路的最佳位置

电线、电缆应进行分类布设。

电缆敷设远离门、窗、口盖等开口处和曲率较小的结构或蒙皮。

线束尽可能靠近接地平面或结构件敷设,可利用成形的结构件作电缆槽,提供屏蔽。

尽可能使导于磁场强度较弱的结构角落,如避开突出的结构件顶部,尽可能敷设在“U”型件的内部。

当有机外未屏蔽或屏蔽效能不高区域的电线和电缆进入机身内部时,将机外所有电缆进行屏蔽保护,屏蔽层接地线应尽量短,并良好搭接,以避免遭受雷击或外部强电磁辐射时电线和电缆上的感应电压和电流损坏电线和电缆以及与电线和电缆连接的机内设备。

不要使燃油传感器导线的走向与通气管、导油管导向走向一致或平行。导线可以贴着蒙皮走,但应避免与雷击电流流向一致。

在非金属机翼蒙皮下的电缆,应根据导线的布设方向,用铝箔材料或良导体金属导线管,保护电缆导线。铝箔材料或金属导线管应和全机的接地网搭接,形成良好的电气通路。

雷电流通过低导电率材料的蒙皮(如钛、碳纤维)区域会产生电磁干扰,应远离这些区域布设电缆。由于空间有限,可采用电气隔离的方法:

1)可采用扭绞线作为电源线;

2)采用屏蔽电缆或屏蔽扭绞线,并将它们的两端均搭接到全机的接地网上;

3)用瞬态抑制器,以保护电网的安全;

4)电气设备和线束的安装应满足要求。

4.4.4选择良好的接地

设备应根据要求选择良好的搭接,并进行搭接电阻的检查。

对全碳纤维复合材料飞机,全机设备进行良好的搭接显得尤为重要,为方便设备的搭接,全机应构建统一的搭接网络。

5结论

雷电对飞机的飞行安全影响较大,全碳纤维材料飞机的雷击防护在飞机的研制过程中是非常重要的,对机体结构采用敷设铜网作为雷击防护层是可行的。

参考文献

[1]RTCA/DO-160F 机载设备环境条件和试验程序.

[2]SAE ARP 5414A-2005 飞机雷电区域划分.

[3]CCAR-23-R3 正常类、实用类、特技类和通勤类飞机适航规定.

[4]FAR23第61号修正案。

碳纤维复合材料范文第10篇

1.1原材料

脂环族环氧树脂CycloaliphaticEpoxy(CEP),双((3,4-环氧环己基)甲基)己二酸酯,江苏泰州泰特尔化工有限公司;阳离子光引发剂二甲苯基碘鎓六氟磷酸盐(820),姜堰市嘉晟科技有限公司;环氧改性有机硅树脂ES06(ES),江苏吴江合力树脂有限公司;1000W高压汞灯,上海煜业电光源制造有限公司;过氧化苯甲酰(BPO),上海国药集团;碳纤维正交平纹布3K,江苏宜兴鼎峰碳纤维织造有限公司;1.5mm厚YL12铝合金板。

1.2试样的制备

损伤金属结构的制备:将1.5mm厚YL12铝合金板裁成35×140mm的矩形板,在中心处预制直径8mm的圆孔作为损伤。光固化树脂基体:将CEP和ES分别按照质量比100∶0、90∶10、80∶20、70∶30:、60∶40得到混合树脂,相应地加入混合树脂质量为3%的820和2%的BPO,便得到了不同组成的光固化树脂基体。光固化修理试样的制备:采用湿铺法粘接修理损伤金属板。粘接修理前对粘接区域进行溶剂清洗以及喷砂处理。复合材料补片的宽度和金属损伤板相同,分别采用不同的长度和铺设层数得到一系列粘接修理试样。完成铺设后,紫外光辐照30min完成固化。修理试样用EPSa-b-c的形式表示,其中a表示混合树脂的组成,b表示补片铺设的层数,c表示补片的长度。例如EPS1-1-60,表示复合材料补片的基体为混合树脂EPS1,碳纤维补片铺设1层,长度为60mm。湿热处理:将修理试样浸入98℃的水中,保持7d,取出烘干后测试拉伸性能。

1.3拉伸测试

采用济南泰思特公司WDW-1型电子万能拉力机在室温下测试试样拉伸性能,在5mm/min的拉伸速率下测试。

2结果与讨论

2.1固化机理

紫外光固化主要是通过紫外光辐照引发光引发剂的分解,产生自由基或阳离子等反应中心,并引发链增长,得到固化产物[13]。由于紫外光的穿透能力有限,限制了固化的厚度。特别是对于含有增强相的树脂基复合材料的固化更是如此。本文在加入阳离子光引发剂的同时,还加入了可以热引发分解的BPO。在紫外光的辐照下,阳离子光引发剂引发环氧树脂的聚合,聚合反应的放热以及光照的热效应诱发BPO分解产生自由基。BPO分解产生的自由基则可以进一步诱发阳离子光引发剂的分解。这样,即使没有紫外光的直接辐照,深层的树脂或光线被遮挡区域的树脂也可以固化。整个试样的固化从表层逐渐向下蔓延,形成自蔓延的特点。

2.2树脂组成的影响

有机硅树脂通常被作为增韧相改性环氧树脂,同时,还具有优良的耐老化性能[14]。为此,我们在树脂体系选择时,引入了环氧改性的有机硅树脂来改善复合材料基体的性能,进而提高复合材料补片的综合性能。图1(a)为不同基体树脂组成粘接修理试样的拉伸曲线,图1(b)为对应的各试样的破坏载荷和有机硅树脂质量百分比的关系,可以看出,随着有机硅树脂ES含量的增加,粘接修理结构拉伸破坏载荷首先有所增加,当有机硅树脂含量超过30%后,载荷开始下降。有机硅树脂的加入提高了复合材料补片基体树脂和胶层树脂的韧性,改善了拉伸加载过程中胶层和复合材料补片的变形协调和载荷分配能力,使得整体粘接修理结构的承载能力得到提升。但是,如果进一步增加有机硅树脂含量,可能导致基体树脂交联程度的下降,对复合材料补片自身强度的影响较大。因为这主要是因为CEP树脂含量的减少会降低自蔓延固化的速率。因此当有机硅树脂的含量在20%~30%之间时,复合材料粘接修理结构具有更好的承载能力。

2.3补片尺寸的影响

补片长度对粘接修理结构破坏载荷的影响随着补片长度的增加,粘接修理结构的拉伸破坏载荷逐渐增大。但是,补片长度从40mm增加到50mm时,拉伸破坏载荷的变化并不大。当补片的长度增加到60mm后,拉伸破坏载荷的增加表现出明显的增大。这和有限元分析的结果相符合[15],也就是只有补片的尺寸增加到一定的程度后,粘接结构中胶层向补片传递载荷的效率才比较高,而且可以降低补片端部胶层的应力水平。这样粘接修理对于损伤结构的承载能力的恢复更有利。增加复合材料补片碳纤维布的层数,可以提高补片的力学性能,进而提高粘接修理结构的。图3(a)和图3(b)分别为EPS0和EPS2复合材料补片单层修理和3层补片修理的情况。显然,3层补片具有更好的粘接修理效果。对于EPS0-3-60试样,其破坏载荷为21.01kN,EPS2-3-60则为21.25kN,两者相差不大,都接近于完好试样22.34kN的破坏载荷。补片层数的增加虽然可以提高补片的力学性能,但是,粘接修理结构更容易发生剥离破坏[16]。因此,对于应急修理而言,为了争取时间,并不需要更多的补片层数就可以满足抢修的需求。

2.4修理方式的影响

单面和双面粘接修理对破坏载荷的影响双面粘接修理和单面粘接修理相比较,前者可以更好地恢复损伤结构的承载能力。单面粘接修理由于结构的不对称,导致偏心载荷,使得粘接修理结构更容易破坏。对于双面粘接修理而言,则不存在上述问题,而且,双面补片可以更好地分担结构载荷,进一步提高粘接修理的效率。从图4中可以看出,双面粘接修理的试样,不论补片是3层或单层,修理后的破坏载荷都更高,更接近完好试样的拉伸破坏载荷。

2.5湿热老化影响

图5为湿热老化前后粘接修理试样的承载能力对比,可以看出,引入有机硅后,复合材料粘接修理结构的耐湿热老化性能明显改善。经过湿热老化处理后,单纯CEP树脂基复合材料粘接修理结构的拉伸破坏载荷下降很大。但是,对于混合树脂基复合材料粘接修理结构,虽然拉伸破坏载荷有明显下降,但是下降幅度较小。有机硅树脂的加入一是可以改善复合材料补片自身的耐老化性能,二是粘接界面的性能也有所改善,减弱湿热对界面的破坏。

2.6破坏模式

试验中试样的破坏模式主要有两种,一种是补片和损伤试样一起破坏,这种破坏形式主要是单层复合材料补片修理试样。单层复合材料补片强度较低,因此,在分担拉伸载荷时和损伤结构同时发生了破坏。但是,对于3层复合材料补片,其强度足够高,即使分担了较大的载荷,在拉伸试验中也没有发生破坏,其破坏模式主要是损伤结构破坏,在补片和损伤结构之间的胶层发生,损伤结构上还残留有胶层和碳纤维。事实上,补片层数的增加导致其厚度的增加,厚度的增加则容易引发剥离的发生。湿热处理的试样,其破坏模式则主要是损伤结构的破坏和补片与粘接表面的剥离失效。湿热条件下,粘接界面被侵入的水分破坏,导致界面层的性能下降,粘接界面层则是将载荷传递到补片上,使补片分担部分载荷,从而恢复损伤结构承载能力。所以说,界面层起着非常关键的作用。湿热环境导致的粘接修理结构承载能力的下降主要是界面层性能下降所导致的,由于湿热的原因,损伤结构上残留的胶层已经被破坏成许多不连续的海岛状,导致胶层性能的下降。

3结论

(1)同时加入光引发剂820和过氧化苯甲酰(BPO),在紫外光的辐照下,以脂环族环氧树脂(CEP)及其和有机硅树脂(ES)的共混树脂为基体的碳纤维增强复合材料,可以自蔓延固化机理,实现快速光固化;(2)有机硅树脂的引入不仅可以改善复合材料粘接修理结构的力学性能,而且可以提高其耐湿热老化的性能;(3)增加复合材料补片的长度和补片层数可以有效提高复合材料粘接修理结构的承载能力,同时,双面贴补比单面贴补具有更好的粘接修理效果。

上一篇:应用材料范文 下一篇:3d打印材料范文