纳米银粉范文

时间:2023-03-22 17:26:45

纳米银粉

纳米银粉范文第1篇

纳米银粉具有比表面积大、活性高、熔点低、烧结性能好等优点,广泛用作催化剂材料、防静电材料、低温超导材料、电子浆料、医用抗菌材料、电极材料、生物传感器材料和生物标记物、光电器件等[1]。因此,纳米银粉的制备和性能研究越来越受到研究人员的关注。近年来,纳米银的制备技术发展迅速,方法多种多样,按制备条件可分为化学还原法(在水性或非水性溶剂中银离子的化学还原)、微乳液法[2]、模板法[3]、电化学法[4]、光诱导或光催化还原法、微波辅助或超声辅助法、辐射还原法等化学方法以及激光气相法、激光烧蚀法等[1,5]物理方法。化学还原法由于制备条件简单、易于控制而得到很好的应用。采用化学还原法制备纳米银,常用的还原剂有甲醛、葡萄糖、水合肼[6-7]、乙二醇[8-9]、次亚磷酸钠[10-11]、抗坏血酸[12]、双氧水、硼氢化钠等[13-15],本研究采用报道较少的连二亚硫酸钠(俗称保险粉)作为还原剂,还原硝酸银/EDTA络合溶液体系,制备纳米级银粉。连二亚硫酸钠在酸性条件下极易分解,在碱性介质中是一种强还原剂,在碱性条件下(25℃),其氧化还原半反应为。由上式可知,连二亚硫酸钠的氧化还原电位随着pH值的升高而下降,可见其还原能力随着pH值的升高而增强。本研究采用连二亚硫酸钠还原硝酸银/EDTA络合溶液制备粒度分布均匀的纳米银粉,考察化学还原反应条件对制得银粉的粒径大小和粒径分布的影响,以了解制得银粉粒径随还原条件变化的规律。

1试验方法

称取一定量硝酸银溶于去离子水中,配成硝酸银溶液,另外称取一定量乙二胺四乙酸与氢氧化钠溶于去离子水中,配成乙二胺四乙酸的氢氧化钠溶液,以某一恒定的转速搅拌该溶液,均匀加入硝酸银溶液,配成Ag-EDTA络合溶液。称取一定量连二亚硫酸钠与少量氢氧化钠溶于去离子水中,配成碱性连二亚硫酸钠还原溶液,转移至梨形分液漏斗中。控制恒温水浴磁力搅拌器温度开关,保持Ag-EDTA络合溶液温度恒定,并保持一定转速搅拌该溶液,打开梨形分液漏斗阀门,控制还原剂溶液以一定的速度滴入Ag-EDTA络合溶液中;还原剂溶液滴加完毕后,再搅拌反应溶液5min,然后采用离心机离心、固液分离。银粉用去离子水洗涤3次后在真空干燥箱中于45℃下干燥12h;干燥后得到的银粉送X射线衍射、扫描电镜分析。试验药剂硝酸银、连二亚硫酸钠、乙二胺四乙酸、氢氧化钠均为分析纯。X射线衍射采用日本RIGAKU公司D/MAX-RB型X射线衍射仪;扫描电镜分析采用日本日立公司S-4800型场发射扫描电子显微镜。

2结果与讨论

连二亚硫酸钠与硝酸银的反应摩尔比为1∶2。为了提高反应的转化率,试验采用连二亚硫酸钠过量的形式,实际连二亚硫酸钠用量为理论用量的1.5倍。初步试验发现,在AgNO3浓度为0.01mol/L,连二亚硫酸钠浓度为0.005mol/L,温度为20℃,搅拌器转速为300r/min,自然pH值条件下,向AgNO3溶液中以0.12mL/s的速度滴加连二亚硫酸钠,制得银粉平均粒径在250nm左右,且粒径分布不均匀。为了制备粒径更小的银粉,将AgNO3用EDTA溶液络合,替代AgNO3溶液。经过试验探索,在AgNO3与EDTA摩尔比为1∶1,Ag-EDTA络合溶液浓度为0.01mol/L,pH值为11左右,还原剂量为1.5倍理论用量,搅拌器转速为400r/min,反应温度为20℃,还原剂滴加速度为0.12mL/s的条件下制得银粉的粒径为100nm左右,且其均匀性较好,在此基础上进行条件试验,考察络合剂用量、Ag-EDTA浓度、pH值、还原剂浓度、反应温度、搅拌速度、还原剂溶液滴加速度对所制得银粉粒径的影响。

2.1络合剂用量对银粉粒径的影响在AgNO3溶液浓度为0.01mol/L,pH=11,还原剂量为1.5倍理论用量,搅拌器转速为400r/min,反应温度为20℃,还原剂滴加速度为0.12mL/s的条件下,络合溶液用量对银粉粒径的影响见图1(图中,D50表示样品累积粒度分布百分数达到50%时所对应的粒径,也叫中值粒径,常用来表示粉体的平均粒度;D90表示样品累积粒度分布百分数达到90%时所对应的粒径,余图同)。随着络合剂EDTA用量增加,银粉粒径明显减小,在EDTA与硝酸银摩尔比为1.1∶1之后,银粉粒径随EDTA加入量的增加而减小的趋势减缓。Ag+与EDTA在溶液中形成结构稳定的螯合物,降低了Ag+的反应活性及Ag+的氧化还原电位,增大了还原反应的难度,因此能够得到粒径较小的银晶体颗粒。EDTA用量过量10%保证Ag+被完全螯合,继续增加EDTA的量对银粉粒径的影响不大。

2.2Ag-EDTA浓度对银粉粒径的影响在上述试验基础上,其它条件不变,保持EDTA过量10%,考察Ag-EDTA络合体系浓度对银粉粒径的影响(见图2),可以看出,随着Ag-EDTA络合溶液浓度的降低,银粉粒径逐渐减小,在银离子浓度为0.005mol/L时,银粉粒径达到最小,平均粒径为60nm左右,并且粒度分布均匀。继续降低Ag-EDTA浓度,银粉粒径略有上升。

2.3pH值对银粉粒径的影响保持Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,其它条件不变,Ag-EDTA络合溶液的pH值对银粉粒径的影响见图3。随着络合溶液pH值升高,银粉粒径逐渐减小,当pH值为11.5时,银粉粒度达到最小,随后银粉粒径减小趋势减缓,变化不大。pH值影响还原剂连二亚硫酸钠的还原能力和络合剂EDTA的络合能力。络合剂EDTA适宜的pH值范围为10以上,pH过低,EDTA解离不完全,络合能力降低;pH过高,则Ag+与OH-结合生成氢氧化银,并迅速转化为黑色的氧化银析出溶液,还原反应难以继续进行。

2.4还原剂浓度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5的条件下,其它条件不变,还原剂浓度对银粉粒径的影响示于图4。随还原剂浓度的降低,银粉粒径逐渐减小,还原剂浓度为0.0075mol/L时,银粉粒径达到最小;继续降低还原剂浓度,银粉粒径变化不大。本试验采用向银溶液中滴入还原剂溶液的方法,降低滴加的还原剂溶液的浓度,单位时间内加入的还原剂量减少,反应速度慢,银晶核生成粒度小且经搅拌很快分散到溶液中,有利于制备小颗粒银粉。

2.5搅拌速度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,其它条件不变,搅拌速度对银粉粒径的影响见图5。可以看出,加大搅拌速度可以明显减小反应制得的银粉粒度,在搅拌速度为400r/min时,银粉粒径最低,继续加强磁力搅拌器的搅拌速度,银粉粒度变化不大。

2.6反应温度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,搅拌转速为400r/min,其它条件不变,反应温度对银粉粒径的影响示于图6。随着反应温度升高,银粉粒径有减小的趋势,在温度50℃时达到最低,继续升高反应温度银粉粒径减小的趋势减缓。由阿累尼乌斯定律可知,提高反应体系的温度可以加快反应进行的速度,温度每升高10℃,化学反应速率增加2~3倍。提高反应温度,还原反应加快,银的成核反应速率增加,在银离子浓度及扩散有限的条件下,银晶核的生成占主导地位,获得的银粉粒径减小。

2.7还原剂溶液滴加速度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,搅拌转速为400r/min,反应温度为50℃,还原剂溶液的滴加速度对银粉粒径的影响见图7。随着还原剂溶液的滴加速度降低,制得银粉粒径逐渐减小,当滴加速度为0.12mL/s时,银粉粒径达到100nm以下。滴加速度为0.06mL/s时制得银粉粒径最小。当滴加速度快的时候,短时间内加入大量还原剂,反应速度过快,银晶核生成后在还原气氛下迅速长大,所生成的银粉颗粒粒径较大。降低滴加速度,反应速度降低,银晶核生成后消耗了还原剂,晶核来不及长大就分散到整个溶液中,降低了晶核长大的可能。以上条件试验表明,在Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,搅拌转速为400r/min,反应温度为50℃,还原剂滴加速度为0.06mL/s的条件下,制得银粉的粒径最小。图8为所制得银粉的场发射扫描电子显微镜(FE-SEM)图像,可以看出,银颗粒整体分散性较好,且基本呈类球形;银颗粒粒径基本在40~80nm之间,平均粒径约为58nm。为了考察制得银粉的晶体结构,进行了X射线衍射分析(见图9),在2θ=35°~85°有5个衍射峰,经过与标准谱图对照,它们分别为面心立方金属银的(111)、(200)、(220)、(311)、(222)5个晶面的衍射峰,无其它杂质峰,这表明所制备的样品为面心立方结构的单相纳米银粉。

3结论

纳米银粉范文第2篇

【关键词】表面活性剂;纳米银粉;乙醇;分散性

纳米银粉具有粒度小、活性大、比表面积大、催化活性好、熔点低等优点,其作为一种新兴的功能材料,其还具有金属银良好的导电性能以及抗菌性能,同时还保留了电铸银颜色光亮的特点,在催化剂材料、低温超导材料、防静电材料、生物传感材料、抗菌以及对部分紫外线进行吸收等功能材料中得到了广泛的应用。

1关于实验

1.1实验材料和仪器

在本实验中需要用到的材料主要有:平均粒度为40nm的纳米银粉、聚乙烯吡咯烷酮(PVP)、十二烷基硫酸钠(SDS)、十六烷基三甲基溴化氨(CTAB)、无水乙醇以及油酸;在试验中需要用到的仪器主要包括:型号为PHS-3C的数字显示PH计、型号为S22PC的可见光分光光度计、型号为KH-700DE的超声波清洗器、型号为80-2B的台式离心机、型号为BS224S的电子天平以及型号为Zetasizer3000的粒度分析仪。

1.2实验的过程

第一步,采用所研制的高真空双枪直流电弧等离子蒸发设备完成实验所需要的纳米银粉的制备。所使用的材料主要为高纯度(99.99%)的金属银,以纯度分别为99.99%以及99.7%的氩气和氢气作为工作气体,工作电流为200A,工作压力为0.02Mpa,氩气:氢气=6:1。第二步,使用粒度分析仪将银粉在无水乙醇中的eta电位测出来,获取银粉的等电点位,依据其大小对调节无水乙醇的酸碱值,使用十二烷基硫酸钠、十六烷基三甲基溴化氨以及聚乙烯吡咯烷酮以及油酸作为分散剂进行分散实验。对表面活性剂浓度以及超声的时间进行改变,将粉体放在560W的超声清洗剂中进行超声分散。第三,使用胶头滴管取样,在离心之后取其上层容易注入大比色皿中,然后通过分光光度计对其的吸光度进行测量,同时要做好测量记录。

1.3对分散性能的评价方法

分光光度计在制造时是依据Beer-Lambert定义的基本原理,其中物质的吸光度和浓度之间是成正比的,吸光度会随着浓度的增加而变大。在文中实验中使用分光光度计对离心后的上层溶液的吸光度进行了测量,对于纳米银粉的分散效果是通过吸光度的大小来表征的,吸光度越高表明在乙醇中单位体积的纳米粉体的含量越高,分散效果越好,纳米银粉最大的吸收波长为420米。

2对实验结果的分析

2.2测量纳米银粉在无水乙醇中的Zeta电位

2.3在不同表明活性剂中纳米银粉最佳超声分时间的确定

纳米银粉范文第3篇

关键词:纳米银 粒子尺寸 水合肼

纳米材料一般指材料尺寸在100nm以内,同时具备纳米尺寸下材料所具有的特殊性能,这种性能是大颗粒材料所没有的。纳米银为黑色粉末,其制品是将纳米银以不同方式混入到介质或基质中。纳米银溶液是纳米银的悬浊液,随浓度不同颜色也变化,随着浓度的增加颜色也逐步加深,从黄色至深红色 。纳米银粒子因其具有纳米级材料所特有的尺寸小效应、表面效应以及量子尺寸效应等而表现出高表面活性和催化性能。同时已成为物理、化学、材料科学研究的一个活跃领域。且其医用方面可用于杀菌抗菌,涂于绷带上刺激伤口部位细胞提高至于过程[1]。此外其在力学、电学、热学、光学、催化等方面具有许多传统材料不具备的奇异特性[2],成为具有特殊性能的功能材料理论研究和应用开发的重要课题[3]。本实验制得纳米银粒子尺寸小、分散性好、分布均匀、结晶性能好。适用于间歇性的工业生产但对于连续生产尚不适用,技术有待进一步提高。采用紫外-可见分光光度计测银溶胶的紫外吸收光谱且紫外-可见光谱分析表征SDBS/PVP复合水溶液体系中,水合肼还原硝酸银形成尺寸、分散性、粒度分布、结晶性的过程。用扫描电子显微镜(SEM)表征其形貌;用X射线衍射仪测试样品的物相。结果表明:纳米银离子尺寸小、粒度分布均匀、分散性好、结晶性能良好。

一、实验

1.仪器与试剂

2.纳米银粉的制备

在去离子水中加入0.1116g的十二烷基苯磺酸钠,溶解后加入0.6000g的聚乙烯吡咯烷酮混合均匀,在一定范围的温度条件下静置一段时间,量取0.625mL的水合肼溶于10mL去离子水中,称取0.3400g的硝酸银溶于10mL去离子水中同时慢慢滴入三口烧瓶中,溶液变为黑色,产生棕色泡沫,反应一段时间后停止实验。

3.纳米银粒子表征方法

用紫外-可见分光光度计测银溶胶的紫外吸收光谱;用扫描电子显微镜(SEM)表征其形貌;用X射线衍射仪测试样品的物相。

二、结果与讨论

1.反应温度对纳米银粒子的影响

纳米银粉的粒径随着反应温度的升高有减小的趋势。峰的半高宽和峰值强度与粒子尺寸、粒度分布和PVP保护剂用量有很大关系[4]。图1所示为不同反应温度下制备的纳米银溶胶的紫外可见吸收光谱图。得知,温度为313 K时得到的纳米银粒子的吸收强度最大,有黑色银胶产生,吸收峰对称性也良好,整个峰半高宽窄度最好,由此表明纳米银粒子产率较高,粒度分布窄度合适;温度由298 K升高到313 K时,紫外可见吸收光谱的最大吸收峰位置以及其形状基本不变,都在400 nm处,与李德刚等[5]用相转移方法得到的银纳米粒子的结果基本吻合。但当温度升高到330K时,吸收峰位置开始发生红移,吸收强度随之变小,半高宽也变宽,即生成的银胶不稳定,有团聚现象甚至会有沉淀出现。吸收强度降低是由于自由电子密度发生变化,吸收峰宽度变宽;最大吸收峰位置红移由纳米粒子的聚集度变高所致[5]。图1表明,制备纳米银粒子的比较适宜温度为313 K。

2.X射线衍射分析

图2为球状或类似球状纳米银粒子的XRD图。其5个峰位置( 2θ为38. 14°,44. 33°,64. 51°,77. 46°,81. 62°) 与JCPDS卡04-0783上数据一致,分别对应于立方晶系银的( 111 ) 、( 200 ) 、( 220 ) 、( 311 ) 、( 222 ) 晶面,可知样品是立方晶系的单质银。图中曲线衍射峰颇为尖锐,说明样品结晶性能良好。此外,图谱中并未见有其它明显的杂质物相衍射峰的存在,说明所制备纳米银粒子较为纯净,杂质离子含量少。

3.反应时间对纳米银粒子的影响

通过观察不同反应时间获得的产物的SEM结果(如图3),也验证了UV-vis的分析结果。在反应起始的短时间内,形成了大量粒度较为均匀球形或类似的粒子,此时粒子没有单独成型而是黏在一起,随着反应时间的增加银粒子单独成型且大部分粒子的直径在40nm附近,所以溶胶的吸收光谱比较单一且对称性较好;随反应时间继续增加,虽然粒子没有黏在一起但凸显较大尺度的片状粒子以及大直径的球形粒子(直径150nm),出现了两种结构差异明显的粒子,使得UV-vis谱带出现肩峰吸收;图中的颗粒开始变得不均匀,这主要是加入PVP起保护剂的作用还有在搅拌作用的双重作用下,抑制了纳米粒子的两极化生长,由于凸现较为明显的片状结构(横断面直径为90-120nm)且有大直径球形粒子的出现,就表现出多吸收峰(SPR)且存在一些杂峰;当反应时间仍在继续增加,片状粒子的形貌开始变得模糊且粒径增大同时球形或类似球形结构也没有体现,这就使得粒子表面可激发的等离子共振[6]强度降低甚至消失。也有学者[7]将此尾端宽化吸收归因于各向异性粒子不同等离子共振的耦合叠加效应[8]。

4.AgNO3浓度对Ag粒度的影响

通过控制变量法在反应体系中只改变AgNO3的浓度,由图4可知,在一定范围内随着AgNO3浓度的增大,银粒子样品的粒径在不断的减小,减小趋势先是缓慢后减小程度加大之后减小稍有缓和,当AgNO3浓度为0.7mol/L时,样品的粒径最小而之后随其浓度的增大粒径又有所增大,增大趋势先缓慢后加快在减慢。由液相中的均匀核化理论[9],溶质粒子形成稳定晶核的条件是需要克服颇大的表面位能垒,亦即需要有很大的过饱和度。在一定范围内随着AgNO3浓度的增大反应体系中的银原子过饱和度也变大,使得形成银晶核数目增加,此过程消耗大量银原子使得因原子的数量相对减少,而得到粒径小的产品。当其浓度超过一定范围后,反应体系反应速度加快形成银晶核数目过多使之碰撞几率加大,而聚集在一起形成大颗粒,导致产品粒径粗大。

三、结论

在十二烷基苯磺酸钠SDBS 和聚乙烯吡咯烷酮PVP 的混合水溶液中,利用水合肼还原硝酸银通过改变反应温度得出制备纳米银粉的比较适宜温度为313 K。利用X 射线衍射分析纳米银粉的晶体结构表明样品为立方晶系的单质银,样品结晶性能良好。由控制反应时间可得到反应时间为10min比较适宜。当AgNO3浓度为0.7mol/L时产品的粒径最小。本实验制备了尺寸小、分散性好、粒度分布均匀、结晶性能好的银灰色的纳米银粒子。此方法工艺过程简单、易于操作、成本低廉、对环境友好 在需要进行小批量生产的间歇操作中应用性良好,为纳米银粒子的制备提供了切实可靠的新方法。

参考文献

[1] Cho K H, Park J E, Osaka T et al. Electrochimica Acta[J],2005, 51: 956.

[2] Saito N, Nishiyams H, Sato K et al. Surface Science[J], 2000,454(6): 1099.

[3] Xu X Y, Yang Q B, Wang Y Z et al. European PolymerJournal[J], 2006, 42: 2081.

[4] Alvarez M M, Khoury J T, Schaaf T G, et al. Optical absorption spectra of nanocrystal gold molecules[J]. Journal of Physical Chemistry B, 1997, 101(19): 3706?3712.

[5] 李德刚, 陈慎豪, 赵世勇, 等. 相转移方法制备银纳米粒子单层膜[J]. 化学学报, 2002, 60(3): 408?412.

[6] JIN R C, CAO Y W, CHAD A M, et al. Photoinduced conversion of silver nanospheres to nanoprisms [J].Science, 2001, 294(30): 1901-1903.

[7] DEIVARAJ T C, LALA N L, Lee J Y. Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods[J]. Journal of Colloid and Interface Science, 2005,289:402–409.

[8] Sun, Y, Mayers, B., Xia, Y, Transformation of silver nanospheres into nanobelts and triangular nan opiates through a thermal process[J], Nano Lett, 2003, 3(5): 675–679.

纳米银粉范文第4篇

【关键词】食品包装 纳米材料 食品贮藏

引言

纳米科学是20世纪末兴起的最重要的科技领域之一,因其在国计民生等诸多领域都产生了深远甚至革命性的影响,得到了各国政府的高度重视与投入。美国自1991年开始将纳米技术列为“政府关键技术”;我国将纳米科学研究列入“863计划”、“国家基金重大研究计划”等重点研究计划。伴随纳米科学理论日益成熟,纳米材料的应用领域不断扩大。纳米材料因其特殊的结构,产生了小尺寸效应、量子效应、表面效应(界面效应),具备卓越的光、电、热、磁、放射、吸收等特殊功能,在机械、电子、化工、包装、国防等领域有着广阔的应用前景。

1 纳米及纳米材料

1.1 纳米

纳米(nanometer)是一个长度单位,1 nm=10-9m,通常界定1-100nm的体系为纳米体系。由于这个尺度空间略大于分子的尺寸上限,恰好能体现分子间相互作用,因此,具有这一尺度物质粒子的许多性质均与常规物质相异,在这个领域中物质的性质有时既不能用经典力学、电磁学等加以解释,也不能用量子力学等理论来理解,需要一个全新的理论和视角。研究上述领域的客观规律的科学被称之为纳米科学。

1. 2 纳米材料

纳米材料根据构成材料物质属性的不同,可以分成金属纳米材料、半导体纳米材料、纳米陶瓷材料、有机纳米材料等,当上述纳米结构单元与其他材料复合时则构成纳米复合材料。纳米复合材料中包括无机一有机物复合、无机―无机复合、金属―陶瓷复合、聚合物―聚合物复合等多种形式。

1. 3 纳米包装材料

食品包装材料多由聚合物制成,如聚氯乙烯(PVC)、聚对苯二甲酸乙二醇(PET)、聚丙烯(PP)、聚乙烯(PE)和聚酞胺(尼龙,PA)等,其制成包装材料透气性难以满足各式果蔬的呼吸强度,尤其当果蔬的呼吸强度很高时,大部分膜不能使包装内氧气和二氧化碳配比达到最佳。进入20世纪90年代,纳米材料及技术的应用发展,给聚合物包装材料的发展带来的巨大革新,纳米包装材料应运而生。

纳米包装材料主要是指应用纳米技术,通过对包装产品进行纳米合成、纳米添加、纳米改性,使其具有某一特性或功能的一类包装材料的总和。在食品包装领域,研究最多的纳米包装材料是聚合物基纳米复合材料PNMC(Polymeric Nano-Metered Composites),常用的聚合物有PA、 PP、 PE、PVC、 PET、 LCP等,常用的纳米材料有金属、无机物聚合物等无机系和有机系成分,通过扦层复合等技术将高分子聚合物和纳米材料复合。

2 纳米包装材料在食品贮藏中的应用

复合纳米包装材料的优良性质使其在食品包装领域广受欢迎,纳米抗菌性包装材料、纳米保鲜包装材料、纳米高阻隔性包装材料等已在食品包装中有了一定的应用,其中在食品保鲜领域中的应用研究已较深入。

采用纳米复合技术制成的新型包装材料聚酞钱-6塑料(NPA6)与传统的尼龙塑料相比,有更多的优越性。其氧气和二氧化碳的透过率降低了一半,水的透过率也下降了30%左右。用它来包装食品,如香肠、火腿、泡菜等,食物的变质程度更小,保质期更长。添加0.1 %~0.5%的纳米Ti02制成的包装材料可以防止紫外线引起的肉类食品的自动氧化变质,保护维生素和芳香化合物不受破坏,使食品保持新鲜。陈丽等人将纳米Ti02粒子和其它11种功能材料加入到PVC中研制出的保鲜膜,可使富士苹果的保存期延长到208天,同时对蔬菜也有较好的保鲜效果。

纳米银粉应用于食品包装中既有抗菌又有保鲜的作用,对细菌和霉菌等抗菌效果好、抗菌时间长,添加到食品包装材料中可保持长期的抗菌效果,且不会因挥发、溶出或光照引起颜色改变或食品污染;同时,纳米银粉具有对乙烯氧化的催化作用,在保鲜包装材料中加入纳米银粉,可将果蔬食品释放出的乙烯加速氧化,减少乙烯含量,达到果蔬保鲜的效果。

结语

用于食品包装中的纳米包装材料优于一般材料,其具有抗菌、低透氧率、低透湿率和阻隔二氧化碳等优点,且具有韧性强、耐磨性等机械加工性能,耐热性、透明度高、抗磁防爆等理化性能。因此纳米包装在食品包装领域中得到了快速的发展。

参考文献

[1]刘兴华,饶景萍.果品蔬菜贮运[M].西安,陕西科学出版社,1998.

[2]何映平.纳米材料及其在食品工业中的应用实例[J]. 热带农业科学,2001(4):74-76.

纳米银粉范文第5篇

【关键词】高岭土-纳米银;插层;制备

1.高岭石的概述

地球上的矿产,主要分为能源矿产、金属矿产和非金属矿产三种类型。高岭土是一种重要的非金属矿产,与云母、石英、碳酸钙并称为四大非金属矿产。我国是世界上最早发现和利用高岭土的国家,远在3000年前的商代所出现的刻纹白陶,就是以高岭土制成。江西景德镇生产的瓷器名扬中外,历来有“白如玉、明如镜、薄如纸、声如罄”的美誉。中国是高岭土的主要出产国,产地有江西景德镇、江苏徐州、河北唐山、湖南醴陵等。现在高岭土(Kaolin)一词就是来源于景德镇东郊的高岭村产的一种可以制瓷的白色粘土而得名。

2.银纳米材料的概述

2.1性质

纳米超微粒子(1~100nm),其本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,与普通大颗粒材料相比,呈现出许多传统材料所不具备的物理、化学性质,近年来已成为物理、化学、材料学科研究的前沿领域。纳米银颗粒因具有表面效应、量子尺寸效应和宏观量子隧道效应等,显示出许多独特的物理和化学性质。纳米银粉具有很高的表面活性及催化性能,优异的导电性、抗氧化性以及低温烧结性能等。但纳米粒子也易于团聚,制备过程中常常需加分散剂等,以层状硅酸盐的片层为纳米反应器的模板制备纳米材料是当前材料研究领域的热点之一。

2.2制备方法

根据制备原理的不同,银纳米材料的制备方法有物理法、化学法和生物法。目前, 银纳米材料的制备方法主要有化学还原法、沉积法、电极法、蒸镀法、机械研磨法等。

2.2.1化学还原法

化学还原法是制备银纳米材料的主要方法,具有设备简单、操作方便、反应条件温和、制得的纳米银产量大、纯度高、颗粒的大小和形状可控、粒径分布相对集中等诸多优点。此法所采用的银盐主要为AgNO3或银氨络合物;常用的还原剂是H2O2、甲醛、水合肼、抗坏血酸、柠檬酸、乙醇、糖、有机胺、多元醇、亚铁盐等;常用的分散剂与保护剂有聚乙烯吡咯烷酮(PVP)、明胶、一元醇、多元醇、山梨醇、芳香醇蜡、多元芳香烃。分散剂与保护剂的作用是使被还原出的Ag处于高度分散状态,以防止其团聚结晶。

2.2.2电化学法

电化学法是直接用电解的方法制备纳米银,电解过程中需要加入配位稳定剂,以防止电解生成的单质颗粒团聚,获取的实验结果比较单一,分别以颗粒状、棒状和树枝状结构的银纳米材料为主。

3.高岭石夹层复合物的概述

高岭土夹层复合物属二维纳米材料,表面性质和用途发生了很大变化,在催化剂、金属回收、净水剂和吸附剂等方面具有新的用途,由原先的体积填料转向功能性填料。

3.1高岭土插层反应的机理

一般认为,高岭土的插层反应是通过层间氢键的断裂以及和插层分子形成新的氢键而实现的。也可以说是电子转移机理。

3.2制备

插层法是最有效地制备纳米级高岭土的方法。插层法是指在不改变具有层片状主体结构特征的前提下,客体能够可逆的插入主体层片之间的缝隙中。某些有机小分子能够直接破坏高岭石层与层之间形成的氢键插入到高岭土的层间,撑大了高岭石层间距,使高岭石层与层产生剥离。影响插层的因素较多,包括有机物本身的特性、含水量、温度、压力、pH 值以及高岭土的粒径大小、结晶程度等。根据插层剂和高岭土插层反应的状态不同,高岭土插层反应的方法分为液相插层法和固相插层法。

3.2.1固相插层法

固相插层法主要是利用外来的机械力来促进固体插层剂与高岭土作用而进入高岭土层间,即将高岭土与固体插层剂混合后研磨来完成插层反应。下述液相插层法的驱动力以浓度梯度为主, 这里则是利用了外力使插层剂进入高岭土层间。优点是插层效果好,即使是少量的研磨也能显著地提高高岭土的插层率。缺点是插层时间长,而且过度的研磨会破坏高岭土的晶体结构,降低高岭土的有序度,增加其本身的体缺陷早期研究中,就有人将高岭土和醋酸钾或尿素等一起研磨,得到高岭土夹层复合物。一般说来,人工和Fisher研磨可以剥离高岭土的层状结构,而Retsch球磨机研磨后可以得到新的夹层复合物。固相插层法可以剥离高岭土的层状结构,制备无定形高岭土,但同时也会导致片层的。

3.2.2液相插层法

液相插层法是插层剂在液态、溶液或熔融状态下进行的插层反应。大多数插层反应都是在液相中进行的。由于插层剂自身特点和高岭土插层反应的特殊性,并不是所有的分子都能够直接插入高岭土层间,大多数分子通过置换的方法嵌入高岭土层间,具体如下:

(1)直接插层:

直接插层法是仅少量极性小分子、短链脂肪酸的一价碱金属盐和碱金属的卤化物可以直接嵌入高岭土层间。优点是操作简单,反应条件容易控制,取代作用完全,插层效果好。缺点是插层时间太长,插层效率低。通过直接插层得到的小分子/高岭土夹层复合物通常作为媒介物,为大分子置换插层提供可能性。我们称之为”预插层体”。

(2)两步插层:

对于不能和高岭土直接插层的物质,它们可以置换高岭土”预插层体”层间的小分子,通过置换的方法制备高岭土夹层复合物。

(3)蒸发溶剂插层法:

蒸发溶剂插层法是小分子在蒸发溶剂、浓缩混合体系的过程中进入高岭土层间而实现的插层反应,整个反应过程溶剂不断蒸出,溶液浓度不断增大。

3.3高岭土夹层复合物的结构和表征

研究高岭土夹层复合物的结构通常从两个方面入手,一是插层分子在高岭土层间的排列方式;二是插层后高岭土自身结构的变化,发生插层反应的基团等等。插层后高岭土最明显的变化就是沿c 轴膨胀,膨胀的程度是由层间小分子的大小和排列方式决定的。表征插层高岭土最重要最常用的手段就是XRD和拉曼光谱或红外光谱( IR) 分析,前者直观反映插层反应的程度; 后者反映小分子结合的部位,也就是插层反应发生的官能团,高岭土各个基团插层后振动频率的变化。TEM或SEM是表征插层后高岭土形态的有效方式。

3.4展望

高岭土的用途多种多样,随着经济的发展,各行各业对高岭土的需求量急速增加,对高岭土的质量要求也越来越高,普通的高岭土已不能满足工业的需求,综合开发利用高岭土资源势在必行。途径就是发展深加工,开发新产品,从传统的应用领域转向高科技、新技术、高效益的领域。 [科]

【参考文献】

[1]王林江,吴大清.高岭石有机插层反应的影响因素[J].化工矿物与加工,2001(5):29-32.

[2]宋晓岚,杨振华,邱冠周等.纳米氧化铈在高新技术中的应用及其制备研究进展[J].材料导报,2003,17(12):36-39.

[3]陈杨,李霞章,陈志刚.纳米CeO2磨料对GaAs晶片的CMP性能研究[J].半导体技术,2006,31(4):253-257.

[4]陈建清,陈杨,陈志刚等.超细CeO2磨料对硅片的抛光性能研究[J].中国机械工程,2004,15(8):743-745.

[5]王万军,郭方方,吴志强,张晓东.高岭石-纳米银复合物的制备与表征[J].资源环境与工程,2009(2)71-73.

[6]段春英,周静芳.银纳米颗粒的制备及表征[J].化学研究,2003,14(3):18-20.

纳米银粉范文第6篇

摘要:介绍了几种纳米材料的物理和化学制备方法,并对不同方法的优劣进行了讨论。

关键词:纳米材料;物理方法;化学方法

中图分类号:TV504文献标识码:A文章编号:16723198(2009)15027402

1引言

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(Bui1ding Blocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。本文简单综述了纳米材料合成与制备中常用的几种方法,并对其优劣进行了比较。

2纳米材料的合成与制备方法

2.1物理制备方法

2.1.1机械法

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm―80nm、粒度分布均匀的ZnO纳米颗粒。

2.1.2气相法

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm―50 nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

2.1.3磁控溅射法与等离子体法

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.2化学制备方法

2.2.1溶胶―凝胶法

溶胶―凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。Marcus Jones等以CdO为原料,通过加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantum yield,QY)为13.8%。

2.2.2离子液法

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm―5μm的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm―80 nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。

2.2.3溶剂热法

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。Lou等采用单源前驱体Bi[S2P(OC8H17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系Bi2S3纳米棒,且该方法适于大规模生产。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72 h制得了长达数毫米的Bi2S3纳米带。

2.2.4微乳法

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm- 800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年,Boutonnet等人应用微乳法,制备出Pt、Pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

4结论

纳米材料由于具有特异的光、电、磁、催化等性能,可广泛应用于国防军事和民用工业的各个领域。它不仅在高科技领域有不可替代的作用,也为传统的产业带来生机和活力。随着纳米材料制备技术的不断开发及应用范围的拓展,工业化生产纳米材料必将对传统的化学工业和其它产业产生重大影响。但到目前为止,开发出来的产品较难实现工业化、商品化规模。主要问题是:对控制纳米粒子的形状、粒度及其分布、性能等的研究很不充分;纳米材料的收集、存放,尤其是纳米材料与纳米科技的生物安全性更是急待解决的问题。这些问题的研究和解决将不仅加速纳米材料和纳米科技的应用和开发,而且将极大地丰富和发展材料科学领域的基础理论。

参考文献

[1]Lu Y,Liaw P K,The mechanical properties of nanostructured materials.JOM,2001,53(3):31.

[2]Gary Stix,微观世界里的大科学,科学,2001,(12):1820.

[3]张璐,姚素薇,张卫国,等.氧化铝纳米线的制备及其形成机理[J].物理化学学报,2005,2(11):12541288..

[4]李英品,周晓荃,周慧静,等.纳米结构MnO2的水热合成、晶型及形貌演化[J].高等学校化学学报,2007,28(7):12231226..

[5]Ledenstoy N N,Crystalline growth characteristics,Mater Prog,1998,35(24):289.

[6]王结良,梁国正,纳米制备新技术研究进展[J].河南化工,2003,(10):7l0.

[7]王林等:纳米材料在一些领域的应用及其前景[J].纳米科技,2005,(4),690.

[8]刘建伟,刘有智,超重力技术制备纳米氧化锌的工艺研究[J].化学工程师,2001,(5):2122.

[9]姚斌,丁炳哲,纳米材料制备研究[J].科学通报,1994,39:1656.

[10]刘海鹏等:纳米技术及其在精细化工中的应用[J].纳米科技,2005,(4),1820,360.

[11]张万忠,李万雄,纳米材料研究综述[J].湖北农学院学报,2003,23(5):397340.

[12] Takaki S,Yatsuya S.Nanoparticle produced by sputtering[C]//14th International Congress on Electron Microscopy[J].Cancun,Mexico:[s.n] 1998:469470..

[13]杜芳林,崔作林,张志锟,等.纳米铜的制备、结构及催化性能[J].分子催化,1997,18(3):4648..

[14]魏胜,王朝阳,黄勇,等.蒸发冷凝法制备纳米Al粉及其热反应特性研究[J].原子能科学技术,2002,36(4):367370..

[15]张立德,纳米材料研究简介[J].物理教学,2001,23(1):25.

[16]苏品书,超微粒子材料技术[J].湖北:武汉出版社,1989:56.

[17]王泽红等:CASO晶须制备技术及应用研究[J].矿冶,2005,(2),3841.

[18]戴静等:硼酸盐晶须在复合材料中的应用[J].化工矿物与加工,2005,(10),3638,.

[19]Jiang Jie,Yu Shuhong,Yao Weitang,et al.Morphogenesis and crystallization of Bi2S3.nanostructures by an ionic liquidassisted templating route:synthesis,formation mechanism,and properties[J].Chem.Mater.,2005,17(24):60946100..

[20]靳刚:纳米生物技术和纳米医学[J].纳米科技,2005,(3),25.

[21]梁勇:纳米微料在医学中的应用[J].中国粉体工业,2005,(3),35.

[22]赵荣祥,徐铸德,李赫,等.离子液介质中硫化铋单晶纳米棒制备与表征[J].无机化学学报,2007,23(5):839843..

[23]刘跃进,李振民,水热法合成云母氧化铁结晶条件[J].化工学报,2004,55(5):20.

[24]张立德,纳米材料与纳米结构[J].北京:化学工业出版社,2000.

[25]顾惕人,朱步瑶等.表面化学[M].北京:科学出版社,1994.

[26]Lou Wenjing,Chen Miao,Wang Xiaobo,et al.Novel singlesource precursors approach to prepare highly uniform Bi2S3 and Sb2S3 nanorods via a solvothermal treatment[J].Chem.Mater.,2007,19(4):872878..

[27]Liu Zhaoping,Liang Jianbo,Li Shu,et al.Synthesis and Growth Mechanism of Bi2S3 Nanoribbons[J].Chem.Eur.J.,2004,10(3):634640..

[28]陈为亮等:化学还原法制备纳米银粉的研究[J].纳米科技,2005,(4),3740.

[29]张登松,施利毅,纳米材料制备的若干新进展[J].化学工业与工程技术,2003,24(5):3236.

[30] Zhang Weixin,Yang Zeheng,Huang Xinmin,et al.Low temperature growth of bismuth sulfide nanorods by a hydrothermal method[J].Solid State Commun.,2001,119(3):143146..

纳米银粉范文第7篇

【关键词】SCN-;纳米银;多壁碳纳米管;Nafion;化学修饰电极;电化学行为

文章编号:ISSN1006―656X(2013)12-0085-04

由于纳米材料的特殊性能,使其成为人们常用的一种电极材料。近年来,利用碳纳米管负载贵金属粒子制得电催化活性高的新型催化剂成为一个新的研究方向 。纳米复合材料将成为人们研究的热点,本文用Nafion分散复合材料纳米银和已羧基化的多壁碳纳米管修饰玻碳电极,通过循环伏安(CV)、微分脉冲(DPV)等电化学方法研究了该电极在混合磷酸盐缓冲溶液(PBS)中的电化学行为以及对硫氰酸根(SCN-)的测定。

一、实验部分

(一) MWCNTs的预处理

用化学沉积法制得的MWCNTs常含有未除尽的金属催化剂,因此必须加以纯化。称取MWCNTs(0.5 g)分散于HCl(60 mL 4.0 mol/L)中,超声处理4 h后用二次蒸馏水洗至中性。

最后再用60 mL浓HNO3和浓H2SO4(1:3 v/v)的混合液超声处理上述处理过的MWCNTs 4 h,最后二次蒸馏水洗至中性,100 ℃真空干燥4 h。

(二)GCE/ Nafion+nano Ag+ MWCNTs 修饰电极的制备

修饰剂的制备:分别称取0.5 mg 已羧基化的 MWCNTs和0.5 mg 纳米银粉溶解于0.1%的Nafion(取20 μL5%的Nafion用无水乙醇稀释至1 mL)。超声分散30 min,得分散良好的Nafion+nano Ag+MWCNTs黑色悬浊液。

修饰电极的制备:先用1 μm,0.3 μm,0.05 μm Al2O3 把玻碳电极进行抛光处理,再用蒸馏水清洗干净后,分别再在1:1 HNO3、无水乙醇、蒸馏水中超声清洗5 min,室温晾干。用微量注射器取10 μL 修饰剂滴涂于电极表面,自然晾干。每次使用前,修饰电极在支持电解质内循环扫描4圈进行活化。

(三)实验方法

用试管(10 mL)量取5 mL 0.1 mol/L PBS,转入电解池中并加入适量的硫氰酸根溶液。于-0.4 V和富集2 s后,在-0.4 V~0.8 V 之间,以GCE/Nafion+nano Ag +MWCNTs 为工作电极,以100 mV/s 的扫描速率用循环伏安(Cyclic voltammetry)向阳极化方向扫描记录伏安曲线;于-0.15 V 富集30 s 后,在-0.15 V~0.28 V 之间记录微分脉冲伏安(Differential pulse voltammetry)曲线;以-0.1 V 为初始电势,0.2 V 为阶跃电势, 记录双电势阶跃计时库仑 (Chronocoulometry)曲线;以[Fe(CN)6]3-/4-的式量电位0.18 V 为起始电位,以0.01~10 kHz为测试频率范围,在10 mmol/L [Fe(CN)6]3-/4-中测试电化学交流阻抗(EIS) 。

二、结果与讨论

(一)实验条件优化

1、支持电解质浓度的选择及pH 对峰电流影响

采用循环伏安法,分别考察了SCN-在0.1 mol/L 的 H2SO4、HCl、NH3-NH4Cl、KCl、 NaOH、HAc-NaAc、混合磷酸盐中的伏安行为。由图3-1可知,SCN_在0.1 mol/L 混合磷酸盐缓冲溶液中峰形最好且峰电流最大,所以本实验选择0.1 mol/L 混合磷酸盐缓冲溶液作为支持电解质浓度。不同pH值混合磷酸盐缓冲溶液(0.1 mol/L)对氧化峰电流的影响中是不同的。图3-2显示pH值为8.0时,峰电流最好,为此选择该PH的0.1 mol/L的混合磷酸盐缓冲溶液作为支持电解质。

图3-1 支持电解质浓度与氧化峰电流的关系 图3-2 pH 对氧化峰电流的影响

2、修饰剂用量、富集(起始)电位和富集时间对峰电流的影响

图3-3表明,修饰剂用量不同对氧化峰电流产生较大影响。修饰剂用量在10 μL时峰电流最大,为此本实验选取10 μL Nafion+nano Ag+MWCNTs分散液来制备化学修饰电极。图3-4考察在-0.6 V ~ -0.05 V 之间富集电位对峰电流的影响。实验表明,在上述电位范围内富集电位对峰电流影响不大,本文以-0.15 V 作为富集起始电位。图3-5显示,当富集时间为30 s 时电流达到饱和吸附。为此将30 s 作为测定前的富集时间。

图3-3 修饰剂用量对氧化峰电流的影响 图3-4 富集电位对峰电流的影响 图3-5 富集时间对氧化峰电流的影响

3、电极重现性和校准曲线

同一支电极每次测量完毕后,电极在缓冲液里循环扫描4圈使电极表面更新,重复测量6次得到电极的相对标准偏差为4.8%。如图3-6所示,实验表明峰电流与SCN_浓度在一定范围内呈线性关系,得到SCN_的标准工作曲线,在3.0×10 -6 ~ 6.0×10 -4 mol/L 范围内, ipa (μA) =-3.42167-0.05062 c (10-6 mol/L),R=0.99739; 在6.0×10 -4~ 5.0×10 -3 mol/L 范围内, ipa (μA) =-16.00845-0.30468 c (10-5 mol/L),R=0.9974,检测限为8.0×10-7 mol/L。

图3-6 氧化峰电流与SCN_浓度的关系

4、干扰实验

此体系中考察了常见的近十余种共存离子对测定SCN_的影响。固定SCN_的浓度为6.0×10-5 mol/L,控制相对误差为±5%,2000倍的SO42-,3000倍的Na+,NO3-,100倍的Mg2+,Zn2+,Ca2+,2倍的I_,Br-,Cl-离子对SCN_的测定不产生影响。

(二) SCN-在纳米银-羧基化多壁碳纳米管化学修饰电极上的电化学行为

1、 SCN_在不同电极上的循环伏安图

裸玻碳电极、Nafion与 MWCNTs 修饰玻碳电极于底液(图3-7(1)a、b)及待测液中(图3-7(2)A、B)均不出峰;Nafion与nano Ag修饰玻碳电极于底液中出现了一对氧化还原峰(图3-7(1)c),Nafion与nano Ag+MWCNTs 修饰玻碳电极于底液中也出现了一对氧化还原峰(图3-7(1)d),氧化峰电位分别为0.493 V和0.435 V,后者比文献[1]0.630 V,负移195 mv,这说明复合上MWCNTs后,纳米银的电活性增加,其还原性增强;在含有相同浓度的SCN_溶液中,Nafion与nano Ag+MWCNTs 修饰玻碳电极上的氧化峰(图3-7(2)D)电位和Nafion与nano Ag修饰玻碳电极上的氧化峰(图3-7(2)C)电位都明显负移,但前者峰电流更大、更加明显。可见SCN_在裸玻碳电极、Nafion与MWCNTs修饰玻碳电极无电催化反应,在Nafion与nano Ag+MWCNTs 修饰玻碳电极上则出现明显的氧化峰(图3-7(2)D),氧化峰电位为0.09 V,这说明nano Ag+MWCNTs 修饰电极可用于对SCN_的测定。

2、 电化学交流阻抗谱表征修饰电极表面

选择循环伏安法分别用裸GCE(a)、GCE/Nafion (b)和GCE/Nafion+nano Ag+MWCNTs (c)测定10 mmol/L [Fe(CN)6]3-/4-溶液中[Fe(CN)6]3-/4-的氧化还原峰电位,以[Fe(CN)6]3-/4-的式量电位0.18 V 为起始电位,以0.01~10 kHz 为测试频率范围,在10 mmol/L [Fe(CN)6]3-/4-中测试裸GCE(a)、GCE/Nafion (b)和GCE/Nafion+nano Ag+MWCNTs (c)的电化学交流阻抗。图3-8是裸GCE(a)、GCE/Nafion (b)和GCE/Nafion+nano Ag+MWCNTs (c)在10 mmol/L [Fe(CN)6]3-/4-中的循环伏安图,由图可知, GCE/Nafion+nano Ag+MWCNTs测得峰形好且峰电流最大;而GCE/Nafion 测得的峰很平坦,不明显。图3-9是裸GCE(a)、GCE/Nafion(b)和GCE/Nafion+nano Ag+MWCNTs(c)在10 mmol/L [Fe(CN)6]3-/4-中的EIS图,它们的 Nyquist 曲线在高频区均出现1个半圆弧。谱图低频区具有近似Wargburg响应线(右侧斜线)的情况.。坐标原点到圆弧左端点的距离表示溶液电阻RΩ,圆弧半径大小表示电荷移动电阻Rct,由图可看出裸GCE的电荷移动电阻(Rct=1480Ω)明显小于GCE/Nafion (10 μL 0.1%Nafion)的电荷移动电阻(Rct=9000Ω),当在Nafion修饰剂加入nano Ag+MWCNTs后,GCE/Nafion+nano Ag+MWCNTs 的电荷移动电阻(Rct=800Ω)又急剧下降。由此可知,不同电极传递电荷的难易程度(由易到难)为:GCE/Nafion+nano Ag+MWCNTs

图3-8 Fe(CN)63-/4-在不同电极上的循环伏安曲线图 图3-9 Fe(CN)63-/4-在不同电极上的交流阻抗图

3、 计时电量法测定修饰电极表面吸附量

由图3-10可见,随着扫描次数的增加,峰电流逐渐下降,最后达到稳定值,说明SCN_在电极上具有吸附性。这与前面的富集时间的影响的实验结果是一致的。

图3-10 SCN-在GCE/Nafion-Ag+MWCNTs 修饰电极上的连续循环伏安图

Anson及同事提出了电势阶跃实验的另一分析模式―计时电量法[1],它记录了电流的积分,即电量对时间的关系Q(t)。近年来计时电量法可用来测定电子反应数n,电极的实际面积A及扩散系数D0,在研究电活性物质的吸附作用时也特别有用。根据Cottrell方程式表示:i(t)=。对极限电流积分可得Qd=。实际的电量Q还有来自双层充电和氧化吸附的某种还原态的电量,因此Q=+Qdl+nFAΓ(t τ)= Qdl+[τ1/2+(t -τ)1/2-t1/2],Qr=Q(τ)-Qd(t >τ)式中:Qdl为对双电层充电的电量,c0为SCN_的浓度,D0为扩散系数,nFAΓ为表面法拉第电量。因此,通过Q(t τ)对θ(θ=[τ1/2+(t -τ)1/2-t1/2])作图,所得两条直线截距之差就是nFAΓ。图3.11 A和B分别为双电势阶跃实验的计时电量响应曲线和计时电量线性关系图,图中截距之差nFAΓ为3.635 μC,而A=7.065×10-2 cm2由此可求出表面吸附量Γ为2.67×10-10 mol.cm-2。

图3.11 双电势阶跃实验的计时电量响应(A)及计时电量线性关系图(B)

4、 扫描速率对峰电流和峰电位的影响

如图3-13 所示, 用线性电势扫描伏安法考察了扫描速率υ对SCN-峰电流ipa 的影响,峰电流ipa 随着扫描速度υ的增大而缓慢增大, 最后趋于平缓。而图3-12所示,随着扫描速率 υ 的增加,氧化峰电位 Epa 逐渐正移,本文循环伏安法采用100 mV/s 的扫速。

图3-12 扫描速率对峰电位的影响 图3-13 扫描速率对峰电流的影响

扫速从里到外依次为:10, 40, 70, 100, 150, 200, 250, 300, 350, 400, 500, 600, 700,800 mV/s

(三)电极反应机理推断

图3-14为修饰电极在不同SCN_浓度中的循环伏安图,由图可知,在空白底液中出现了一对可逆性较好的氧化还原峰,这对氧化还原峰是修饰电极表面:AgAg+之间的转化;在SCN_存在下,氧化峰电位和还原峰电位明显负移,且随着SCN_浓度的增大,氧化峰电流先减小后增大,还原峰电流逐渐减少,这是因为修饰电极表面的纳米Ag被氧化成的Ag+离子与溶液中的SCN_结合生成[Ag(SCN_)]n1-n,且随着SCN_浓度的增大,其与Ag+结合的程度增大,促使Ag==Ag+反应向右边移动,导致氧化峰电流先减小后增大,而Ag+浓度的减少导致了还原峰电位的降低。因此,我们认为电极反应机理如下 AgAg+

Ag++ nSCN[Ag(SCN_)]n1-n

具体n值进一步研究。

图3-14 GCE/Nafion+nano Ag+MWCNTs在0.1 mol/L PBS (pH 8.0)中的循环伏安图(a)空白底液;(b)2.0×10-3 mol/L SCN-;(c)3.0×10-3 mol/L SCN-;(d)5.0×10-3 mol/L SCN-;(e)9.0×10-3 mol/L mol/L SCN-;

(四)样品的测定

1、修饰电极在定量分析中的应用

移取已配制好的0.1 mol/L SCN_储备液1 mL于100 mL容量瓶中,稀释至刻度,得0.001 mol/L 的标准溶液,待测。测定时,分别吸取0.001 mol/L 300 μL和0.1 mol/L 40 μL标准溶液用0.1 mol/L PBS (pH 8.0)缓冲溶液稀释至5 mL 得到标准溶液A(60.00 mol/L)和标准溶液B(800.0mol/L),用标准加入法测定并做回收实验。经过换算,标准溶液A和B中SCN_的测定结果表明,每个样品测定5次 RSD

2、样品分析

将适量硫氰酸盐标准溶液与自来水、河水和废水混合后,用所建立的方法进行测定,结果表明回收率在99.02%~106.0%之间。即本实验所研制的GCE/Nafion+nano Ag+MWCNTs 修饰电极可应用于实际样品中对SCN_的测定。

表 3 样品中硫氰酸盐的测定结果(n=3)

三、结论

在pH 为8.0的0.1 mol/L 的 PBS 溶液中,以Nafion 分散的 nano Ag+MWCNTs 修饰玻碳电极(GCE/Nafion+nano Ag+MWCNTs)的氧化峰电位明显负移,说明复合上已羧基化多壁碳纳米管后,纳米银的电活性明显增加,其还原性增强,可用该修饰电极对SCN_进行测定,SCN_在GCE/Nafion+nano Ag+MWCNTs上的电极过程为一具有吸附性的过程,当富集时间为30 s,用微分脉冲伏安法测得峰电流ipa 与SCN-浓度c的关系为:在3.0×10 -6 ~ 6.0×10 -4 mol/L 范围内, ipa (μA) =-3.42167-0.05062 c (10-6 mol/L),相关系数为 0.99739; 在6.0×10 -4~ 5.0×10 -3 mol/L 范围内, ipa (μA) =-16.00845-0.30468 c (10-5 mol/L),相关系数为0.9974,检测限为8.0×10-7 mol/L。对SCN_进行了测定,回收率在97.8% ~ 106.0%之间,结果满意。

参考文献:

[1] 高迎春.银纳米修饰电极的制备及其应用.安微师范大学硕士学位论文.2004,4:1-35.

[2] 孔继川,樊 静,冯素玲. 荧光动力学法测定唾液中痕量硫氰根. 分析测试学报.2006,25(1):109-111.

[3] 郭东华,刘贤文,王春生,范智慧.异烟酸-吡唑啉酮分光光度法测定硫氰酸根用于油水井间示踪.油田大学.2007,24(12):304-306.

[4] 李欣.3,5一二澳一PADAP分光光度法测定微量SCN-离子的研究. 化学分析计量.2000,9(2):33-34.

[5] 柴雅琴,孙志勇,袁 若 ,甘贤雪,许文菊,徐 岚.苯甲醛缩氨基脲铜(Ⅱ)配合物为载体的高选择性硫氰酸根离子电极的研究. 化学学报.2003,61(9):1511-1515.

[6] 廖家耀,袁 若,柴雅琴,叶光荣,陈时洪. 2′(2呋喃亚甲基)水杨酰腙Schiff碱铜(Ⅱ)配合物为中性载体的高选择性硫氰酸根离子选择电极的研究.西南师范大学学报(自然科学版). 2006,31(4):106-109.

[7] 胡荣宗 赖丽 栾艺华.一种新型离子色谱安培检测器电解池的研制及Br-、I-、SCN-的检测.分析仪器.2004,1:13-17.

纳米银粉范文第8篇

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《NanostructuredMaterials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(Bui1dingBlocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。本文简单综述了纳米材料合成与制备中常用的几种方法,并对其优劣进行了比较。

2纳米材料的合成与制备方法

2.1物理制备方法

2.1.1机械法

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的ZnO纳米颗粒。

2.1.2气相法

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

2.1.3磁控溅射法与等离子体法

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.2化学制备方法

2.2.1溶胶—凝胶法

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。MarcusJones等以CdO为原料,通过加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantumyield,QY)为13.8%。

2.2.2离子液法

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。

2.2.3溶剂热法

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。Lou等采用单源前驱体Bi[S2P(OC8H17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系Bi2S3纳米棒,且该方法适于大规模生产。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72h制得了长达数毫米的Bi2S3纳米带。

2.2.4微乳法

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm-800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年,Boutonnet等人应用微乳法,制备出Pt、Pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

4结论

纳米银粉范文第9篇

关键词:军用包装;纳米技术;纳米材料

中图分类号:E075文献标识码:A

Abstract: On the base of expounding the particularity of the mlitary pckaging and the nanometered technolog's advantage in military packaging, analyzed the development of mlitary nanometered pckaging technolog in the world, pointed out the basic development tactic of mlitary nanometered pckaging in my country.

Key words: mlitary packaging; nanometered technolog; nano-

metered materials

军用物资包装是整个军事后勤系统运作的基石和军事后勤科学的重要构成因素,在军事后勤革命中起着举足轻重的作用。以纳米技术及其材料为代表的新技术、新材料在军用包装领域的应用是当今各国军用包装发展的重要方向。纳米包装是反映使用纳米材料、纳米技术对包装产品进行纳米合成、纳米添加、纳米改性,使其具备纳米结构、尺度、特异功能的包装新物性的总称。

1军用包装的特殊性要求

军用包装除具有普通产品包装的防护、方便运输与储存等基本功能之外,其特殊的职能也就赋予了它特殊的功能和性能要求。简单来说,军用包装的特殊性要求就是具有不同侧重点的综合防护包装。

随着现代军事探测技术和武器打击能力的飞速发展,现代战争更具高技术性,战场环境日趋恶化,军用包装的防护功能也不仅仅停留于传统的防潮、防湿等,还要考虑到电磁、辐射等新的环境因素。因此,今后军用物资尤其是高技术武器装备的包装必然继续向综合防护方向发展。而随着科技的进步,各种光化学功能材料、隐身功能材料、导电功能材料、防潮防静电复合膜、防静电缓冲材料等新材料的研制成功,也为实现综合防护包装提供了技术保证。目前,美军就在大力发展各种智能型包装、防爆包装、超高功能包装、防静电包装、抗电磁包装、防红外包装、防辐射包装、隐形包装等新型包装技术和材料,其中纳米技术和纳米材料就是军用包装发展的重要技术方向和工作重点。

2纳米材料在军用包装领域的比较优势

纳米包装材料与传统包装材料相比,具有以下特性:

(1)较高的机械性能。纳米包装材料具有较高的强韧性、耐磨性和可塑性,作为包装材料可靠性更好,使用寿命更长。

(2)优异的物理化学性能。纳米材料具有奇异或反常的物理化学性能,如高耐热性、好的光泽和透明度、高阻隔性、抗磁防爆等特性,可用于特种包装如耐蚀包装、防静电防电磁包装、防火防爆包装、迷彩包装、高阻包装、隐身包装等。

(3)优良的加工性能。由于纳米包装材料具有较高的弹性、韧性和屈挠度等,在吹塑、压延、浇铸、注塑等成型中,表现出较好的加工性能。

(4)较好的生态性。如纳米TiO2具有很强的紫外线吸收和光催化降解能力,作为包装材料可通过降解作用避免对环境造成危害。

3纳米技术在军用包装领域的应用现状

3.1利用纳米材料良好的机械特性制造高强度和高韧性包装

纳米材料增强的聚合物复合体系具有高的强度、弹性模量和韧性。在加入与普通材料相同体积比例的情况下,强度和韧性一般要高出1~2倍,在加入相同质量比例的情况下,一般要高出10倍以上。如插层型纳米复合材料就是将无机物的刚性、尺寸稳定性和热稳定性与聚合物的韧性、可加工性完美结合起来,使材料具有高强度、高韧性和高耐热性。同时,由于纳米粒子小于可见光波长,使材料具有良好的光泽和耐老化性,适合应用于军用食品的内外包装。

3.2利用纳米材料的导电性能,制造防静电包装和防电磁包装

由于金属纳米微粒等材料具有消除静电的特殊功能,特别是纳米掺锑二氧化锡微粒具有良好的导电性、稳定性和低的红外发射率,在包装材料中添加这种微粒时,材料的导电性能明显提高,可以消除静电。纳米型高分子聚合物导电包装材料,不仅导电能力极大提高,可用于防静电包装、防电磁包装等,而且其他理化性能也大为增强。例如,一种由ERP/PP/PE/滑石粉纳米复合而成的超级聚合物TSOP,硬度高、耐热性好、抗冲击性高,可用作导弹包装材料[1]。

3.3利用纳米材料的阻隔性,制造高密封性包装

对于气体、液体的阻隔性是对包装防护能力的基本要求。插层型纳米复合材料就能表现出良好的尺寸稳定性和气体阻隔性。美军研究机构曾专门研究以聚乙烯、多元酯、聚酯乙烯为基体的纳米插层复合材料,制成的纳米复合材料的氧气、水气渗透率明显降低,强度、模量、韧性也比原生聚合物提高2~6倍。将纳米乙烯基复合材料通过热压与低密度聚乙烯制成多层薄膜,阻隔性良好,可替代目前常用的铝箔材料,其质量也减轻10%~30%,同时降低了包装成本[2]。

3.4利用纳米材料的抑菌保鲜功能,制造先进食品包装

将纳米TiO2融入基体聚合物制造出具有优良抑菌和自洁功能的纳米复合食品包装材料,该材料可抑制微生物生长,分解有机污染物,对于延长食品货架期具有重要作用。纳米级TiO2还具有一定的紫外线吸收功能,从而产生活性自由基,发挥抗菌、分解内毒素及去除异味功能[3]。

纳米级银粉是乙烯氧化的良好催化剂。在果蔬食品包装材料中加入纳米银粉,可加速氧化果蔬食品释放出的乙烯,减少包装容器中的乙烯含量,从而达到良好的保鲜效果。

3.5各种功能(智能)型纳米包装材料的应用

纳米功能、智能型包装材料,是用光电、温敏、湿敏等功能材料与包装材料复合而成,它可以识别和指示包装空间的温度、湿度、压力以及密封的程度、时间等一些重要参数,可用于高档包装和军品包装,发展前景很好。

3.6纳米防爆及其它军用防护包装的应用

美国在20世纪80年代就率先对雷管等火工品的防爆包装进行试验,成功研制了一种可注塑填充在包装容器内的防爆材料,具有重量轻、多孔、吸收动力冲击波和减震等特点。这种材料不仅能防止一个容器中的爆炸物发生爆炸,而且还能防止相邻的其他容器中的爆炸物发生爆炸。

借助于传统的涂层技术可获得纳米复合体系涂层。例如,以纳米硅基陶瓷制成的特种不污染耐磨透明涂料,涂在玻璃、塑料等物体上,具有防污、防尘、耐刮、耐磨、防火等功能。此外,纳米材料可以吸收红外线、紫外线、雷达波等,在军用防护包装领域应用广泛。

4国内纳米包装技术的发展初具规模

2006年11月举行的我国“第二届纳米技术在包装领域应用研讨会”表明,我国的纳米技术和材料在包装印刷行业的应用开发,已经达到了实际应用的阶段,如纳米高档油墨颜料、纳米抗菌包装、纳米塑料包装、纳米复合包装材料、纳米防伪包装印刷等,纳米技术还可应用于造纸及复印纸张、粘合剂、包装机械、军用包装等领域,对传统包装产品的技术创新及未来新型包装材料的发展和性能提高将产生积极的促进作用。

国内在有些纳米包装印刷领域已经初步产业化,有的已完成中试,即可形成规模化生产。例如高阻隔纳米PET瓶的研发就比较成功,这种瓶子对气体分子的阻隔性非常好,重量比玻璃瓶轻一半以上,而且烤不坏(可耐150℃高温),也摔不碎,阻燃性好。国家对纳米PET瓶的研发和生产也给予了充分的政策支持。因此,国内进行军用纳米包装应用研究的技术基础已基本具备[4]。

5军用纳米包装发展的策略与方向

国际乃至国内纳米技术和纳米材料的研发方兴未艾,纳米技术之于包装的重要性已无需多言,我国军用物资包装应抓住这一千载难逢的发展机遇,快速提高军用包装的技术水平。就军用纳米包装的发展策略,应同时开展两个方面的工作:

一是结合我国纳米产业的技术水平,针对军用包装的特殊性要求,继续在一些重要和优势领域进行针对性的技术研究,解决阻碍应用和产业化的关键技术难题。例如,国内对纳米塑料的研发水平较高,开发的适合于食品包装的纳米塑料产品具有较高机械强度、高阻隔性和热稳定性,已基本具备产业化的基础。但要将纳米塑料大规模引入军用食品包装,其对健康和环境的安全性还有待进行较为全面和准确的研究和评估。国外已有研究表明,某些食品接触的纳米材料存在安全隐患,国内对这方面的研究尚在起步阶段[5]。

二是对我国军用包装的现状和国内纳米产业水平进行系统的比较分析,对发展需求较大、又具备较成熟的纳米技术和产品可供利用的军用包装项目,要尽早着手启动产品试制和编配论证研究。

参考文献:

[1] 何江川,等. 电磁屏蔽涂料制备的新进展[J]. 包装工程,2004(6):55-57.

[2] 杨水彬,等. 高阻隔性塑料包装膜及其应用[J]. 包装工程,2005(1):54-56.

[3] 吴俊. 纳米复合材料在军用食品包装中的应用[J]. 军事经济学院学报,2005(4):30-32.

[4] 张书彬. 纳米技术在包装中的应用[J]. 重庆工商大学学报,2008(3):329-332.

纳米银粉范文第10篇

[关键词]纳米技术、包装、食品包装、药品包装

中图分类号:TB383.1;TB484 文献标识码:A 文章编号:1009-914X(2015)06-0047-02

20世纪90年代初兴起的纳米技术,被认为是21世纪科技发展的前沿领域。它主要研究0.1~100nm尺寸之间的物质组成体系以及其运动规律和相互作用,其中在实际应用中纳米技术的实用性。它是一种结合科学前沿和高技术于一体的完整体系。纳米技术的出现标志着人类改造自然的能力已延伸到原子、分子水平,标志着人类科学技术已进入一个新的时代――纳米科技时代。其科学价值和应用前景已逐渐被人们所认识,纳米科学与技术被认为是21世纪3大科技之一。纳米技术主要包括:纳米物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学和纳米力学。在包装行业迅速发展的当今社会,纳米技术必然会引领包装行业走向更好的未来。

1 纳米材料

纳米材料是纳米科学技术最基本的组成部分。纳米材料可定义为:把组成相或晶粒结构控制在100nm以下长度尺寸的材料。从广义上说,纳米材料是指在三维空间中至少有一维处于纳米尺寸长度范围或由它们作为基本单元构成的材料。

1.1 纳米材料的结构特征和性质

纳米材料又称为纳米结构材料,主要由晶粒和晶界组成。纳米晶体结构与常规物质不同,关于纳米晶体结构特征主要有两类看法:a.以Gleiter为代表的1类气体0结构。它既不同于长程有序的晶体也不同于近程有序的非晶体,而是处于一种无序度更高的状态;b.近程有序结构说。根据大量的实验结果分析,纳米材料的晶界处存在着短程有序的结构单元,原子保持一定的有序度,趋于低能态排列。按不同的分类原则,纳米材料有不同的分类。按纳米晶体结构形态划分成4类:零维纳米材料,如原子团、量子点等;一维纳米材料,即在一维方向上晶粒尺寸为纳米量级,如纳米丝、量子线等;二维纳米材料,即在二维方向上晶粒尺寸为纳米量级,如纳米厚度薄膜,碳纳米管等;三维纳米材料,即在三维方向上晶粒尺寸为纳米量级,如通常所指的纳米固体。把所有纳米材料从结构上区分为两类:第一类纳米材料结构全部为晶粒和晶界组成,结构基元尺寸为纳米量级;第二类是低密度具有大量纳米尺寸空洞的无规网格结构,由纳米晶粒和纳米空洞(有时还有纳米骨架结构和更小的亚稳原子团簇)组成。

1.2 纳米材料优异的特性[1~2]

a.表面效应 表面效应是指纳米晶粒表面原子数与总原子数之比,随粒径变小而表面急剧增大后所引起的性质上的变化 这种表面效应使其在催化、吸附、化学反应等方面具有普通材料无法比拟的优越性。

b.体积效应 当纳米晶粒的尺寸与传导电子的德布罗意波波长相当或更小时,其周期性的边界条件将被破坏,使其物理性质、化学活性、电磁活性、光吸收和催化特性等与普通材料相比都将发生很大变化,这就是纳米粒子的体积效应。

c.量子尺寸效应 指纳米粒子尺寸下降到一定值时,纳米能级附近的电子能级由连续能级变为分离能级的现象,这一效应可使纳米粒子具有高的光学非线性、特异催化性和光学催化性等。

d.宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量如微粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,它们可以穿越宏观系统的势垒而发生变化,故称为宏观量子隧道效应MQT。早期曾被用来定性的解释纳米Ni晶粒在低温下保持顺磁性现象。这一效应与量子尺寸效应一起确定了微器件进一步微型化的极限,同时也限定了采用磁带磁盘进行信息存储的最短时间。

e.独特的光学性质 又分为:线性光学性质。纳米材料的红外吸收研究是近年来比较活跃的领域,在纳米SnO2、Fe2O3、Al2O3中均观察到异常红外振动吸收。目前,纳米材料拉曼光谱的研究也日益引起关注。当Si晶粒尺寸减小到5nm或更小时,观察到很强的可见光发射。进一步的研究发现,CdS、CuCl、TiO2、SnO2、Fe2O3等的晶粒尺寸减小到纳米量级时,也观察到发光现象。非线性光学效应。纳米材料的非线性光学效应分为共振和非共振光学非线性效应,前者由波长低于共振吸收区的光照射样品而导致,其来源于电子在不同电子能级的分布而引起电子结构的非线性,从而使纳米材料的非线性响应显著增大;后者由高于纳米材料的光吸收边的光照射样品导致,目前主要采用ZSCAN和DFWM技术来探测纳米材料的光学非线性。

f.巨磁电阻效应(GMR) 磁场导致物体电阻率改变的现象,称为磁电阻效应(MR),对于一般的金属其效应(2%~3%)常可忽略。巨磁电阻效应(GMR)是指在一定的磁场下电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍。最近,在一些磁性纳米材料中观测到比巨磁电阻效应大得多的效应称为庞磁电阻效应(CMR)。

g.超塑性 指材料在特定条件下变形时不存在加工硬化现象,且可以承受很大程度的塑性变形而不断裂,这种特性被称为超塑性或超延展性。材料超塑变形的基本原理是高温下的晶界滑移。除以上特性外,纳米材料还具有高导电率和扩散率、高比热和热膨胀、高磁化率和矫顽力,在催化、光电化学、熔点、超导等方面也显示出与宏观晶体材料不同的特性。

2 纳米技术在食品包装应用研究的最新技术

2.1 纳米抗菌性包装材料

传统的抗菌材料一般采用以银、铜、锌等金属离子为抗菌活性成分的抗菌剂生产工艺,新的MOD系列纳米高性能无机抗菌剂是将纳米技术导入无菌复合包装,是以MOD活性基因及无机纳米银化合物为主要抗菌成份,以各种无机材料为载体而制成的无机抗菌粉体。该抗菌材料采用高科技纳米技术制备而成,抗菌机理为金属离子作用和光催化作用,具有强力的长效抗菌功能,抗菌率可达99.9%,彻底解决了无机抗菌包装材料在应用中变色的难题,是一种无毒的广谱抗菌剂,可广泛应用于生产液体奶、饮料无菌复合包装产品。抗菌制品被世界各国认为是跨世纪的环保和健康产品,纳米无机抗菌剂具有巨大的潜在市场[3]。新型抗菌材料尼龙66中掺加了一种特殊的纳米粘土复合材料,经改性后,不但提高了强度、韧性等物理力学性能,还对大肠杆菌、金黄色葡萄球菌具有明显的杀伤效果,同时生产成本也可大幅度降低,应用于食品等高档包装薄膜的生产。日本开发了以银沸石为母料的全新型无机抗菌剂,既起催化作用,同时有具有显著的抗菌特性,其特点为抗菌效果持续时间长,不会气化和迁移而对包装物产生影响,加工稳定性高,不会污染环境。添加银沸石母料(含量1%~ 3%)制得的薄膜或表面覆一层这种薄膜的容器,经2年试用表明:在无营养源的情况下,含1%银沸石的薄膜在1~2天内完全杀死会引起食品中毒菌类,广泛应用于熟食肉类、水产品和液体食品包装[4]。

2.2 纳米保鲜包装材料

在保鲜包装中,果蔬释放出乙烯,当乙烯释放到一定浓度后,果蔬会加速腐烂。因此,果蔬等新鲜食品的保鲜技术的思路,是加入乙烯吸收剂,减少加快果蔬后熟过程的乙烯气体含量,控制包装内部气氛浓度。纳米Ag粉具有乙烯氧化的催化作用,在保鲜包装材料中加入纳米银粉,便可加速氧化果蔬食品释放出的乙烯,减少包装中乙烯含量,从而达到良好的保鲜效果,并延长货架寿命。紫外线不仅能使肉类食品自动氧化而变色,而且还会破坏食品中的维生素和芳香化合物,从而降低食品的营养价值。利用纳米材料的光学特性,纳米TiO2粉体可以有效地屏蔽紫外线,用添加0.1%~0.5%的纳米TiO2制成的透明塑料包装材料包装食品,既可防止紫外线对食品的破坏作用,还可以使食品保持新鲜。纳米技术在食品包装领域已得到较广泛地应用,陈丽、李喜宏[5]等人成功研制出富士苹果PVC/TiO2纳米保鲜膜;李喜宏等[6]还进行了PE/Ag纳米防霉保鲜膜研制;黄媛媛等通过实验研制了一种新型绿茶纳米包装材料,与普通包装材料相比,透氧量降低2.1%,透湿量降低28.0%,纵向拉伸强度提高24.0%;绿茶包装240d后,新型纳米材料包装的绿茶中,维生素C、叶绿素、茶多酚、氨基酸保留量比采用普通包装绿茶分别高7.7%、6.9%、10.0%、2.0%。

2.3 纳米高阻隔性材料及其在高阻隔性PET塑料啤酒瓶中的应用

食品包装阻隔性主要是指氧气、二氧化碳等的气体阻隔性,水蒸气阻隔性等。目前市场上较普遍的玻璃啤酒瓶存在质重、运输破损与易爆裂,制造污染等不利因素,国外上世纪90年代就已经着手研制用于啤酒灌装的PET瓶。啤酒对包装材料要求的一个重要指标是对气体的阻隔性,首先要保证在6个月的货架期内CO2的损失率小于10%,同时氧气的透过量不超过110-6。氧气尤为敏感,极微量的氧气就可以使啤酒产生异味从而影响口感,甚至是塑料瓶体材料自身溶解的氧的渗出都会影响啤酒的品质,塑料作为啤酒包装材料首先必须解决的就是气体的阻隔性问题。PET瓶因透明,化学性质稳定,阻隔性相对好,质轻价廉,回收方便等优点广泛用于软饮料和含气饮料的包装,但作为啤酒瓶,PET的气体阻隔性仍不够高,普通PET装啤酒一般只有1个月左右的保质期,不能满足市场需求。如何改进PET材料组分使之适用于啤酒包装是该领域的一个重要课题,提高聚酯瓶气体阻隔性是实现啤酒包装塑料化首要解决的技术问题。法国Sidel公司开发的无定形纳米碳涂覆技术(ACTIS)是使等离子乙炔在PET瓶内壁凝聚淀积,形成一层高度氢化的非晶态碳均匀的纳米固体膜,厚度为20~150nm。采用ACTIS工艺处理的PET瓶,较普通PET瓶的隔氧化性能效果提高30倍,对CO2的阻透性提高7倍多,防乙醛的渗入性提高了6倍[7]。此外,中科院化学所工程塑料国家重点实验室的研究人员使用PET(聚对苯二甲酸乙二醇酯)聚合插层复合技术,将有机蒙脱石与PET单体一起加和到聚合釜中,成功地制备了PET纳米塑料(NPET),这种纳米塑料的阻隔性较普通的PET有了很大改善,实验表明:把啤酒装在NPET瓶里保存了4~5个月后,结果发现啤酒的口味与新鲜啤酒没有明显区别[8]。

3 纳米技术在药品包装应用研究的最新技术

3.1 高阻隔性包装

高阻隔性包装是指对氧气、水蒸气、二氧化碳等有高阻隔性的包装,高阻隔包装常采用多层复合膜。药用泡罩包装材料包括药用铝箔、塑料硬片(最常用的材料是药用聚氯乙烯PVC硬片)、热封涂料等。但因为药品对湿气、氧气等敏感和人们对药用包装要求的提高及药品储存期的延长,现在正在采用新技术将塑料硬片复合一层高阻隔性材料,如PVDC等,以提高对湿气等气体的阻隔性能,最具有代表的结构为PVC/PVDC,PVDC作为高阻隔层材料,其最大的特点就是对气体水蒸汽优异的阻隔性,很好的保持药品原味。

添加纳米级材料的无机粒子可以极大地改进基础树脂的物性,在高阻隔包装材料中发挥神奇的作用[9]。如德国Bayer公司推出的尼龙纳米复合材料,把化学改性的硅酸盐粘土分散在PA6薄膜中,这些细小颗粒不影响薄膜透明度,但建立了迷宫式的气体通路,减慢气体通过薄膜的进程。日本纳米材料公司将纳米复合材料涂在各种薄膜基体上,据称阻隔性与镀铝膜相同。既具有无机材料的高阻隔性又有塑料透明性的涂氧化硅膜是塑料阻隔技术发展的代表,这种薄膜光泽、透明性好,阻隔性优于一般共挤出薄膜和PVDC涂布膜。氧化硅的深层厚度仅为0.05~0.06 m,不会影响透明度,氧气、水蒸气的透过率极低,而且与塑料膜粘合极牢,抗弯折性极佳,耐消毒,因而在美国、日本等发达国家已生产和使用。

3.2 纳米抗菌性包装材料

纳米抗菌性包装材料在药品包装领域的应用前景有具有抗菌功能的纳米纸、纳米复合抗菌素薄膜等。主要是将一些纳米级的无机抗菌剂加入到造纸浆料或者薄膜中,制成抗菌性能极强的纳米纸[10]、纳米薄膜。

由于许多有机抗菌剂存在着耐热性差、易挥发、易分解产生有害物质、安全性能不好等问题,所以无机抗菌剂的开发成为人们的研究重点。人们利用超微细技术可以产生纳米级的无机抗菌剂,无机抗菌剂主要包括银、铜、锌、硫、砷及其离子元素。光催化抗菌剂有纳米级氧化钛、氧化硅、氧化锌等,它们能将细菌和残骸一起杀灭和消除,所以比传统的抗菌剂仅能杀死细菌本身的性能更加优越。MOD系列的纳米高性能无机抗菌剂还解决了无机抗菌剂在应用中 变色的世界性难题。

4 展望

纳米技术是未来包装技术的希望。它可以使用更少的材料,同时具有更好的性能,并且使包装成为智能化系统的一部分。纳米技术制造的包装材料有更好的强度、刚性、生物降解性、化学稳定性、热力稳定性、隔热防火特性和防紫外线特性等。这必将使得食品和药品包装领域的新材料新技术大量出现。从而使这些与我们生活密切相关的商品质量得到更好的保障。

参考文献

[1] 张荣.包装机中薄膜热封过程的仿真研究[D].哈尔滨:哈尔滨商业大学,2002.

[2] 程卫国.等.MATLAB5.3应用指南[M].北京:邮电出版社,2000.

[3] 陈希荣.纳米无机抗菌剂的添加法及在液态奶包装上应用[N].中国包装报,2005-07-16

[4] 黄媛媛.王林,胡秋辉. 纳米包装在食品保鲜中的应用及其安全评价[J].食品科学,2005:16(8):442-444

[5] 陈丽,李喜宏,胡云峰,等.富士苹果PVC/TiO2纳米保鲜膜的研究[J].食品科学,2001,22(7):74-76

[6] 李喜宏,陈丽,关文强.PE/Ag纳米防霉保鲜膜研制[J].食品科学,2002,23(2):129-132

[7] 徐锦龙.聚酯啤酒瓶技术现状及发展趋势[J].合成技术及应用,2001,15(2):22-24.

[8] 欣溪.食品工业中的纳米科技[J].中外食品,2002,(7):44

[9] 王景清.采用新技术发展医用高阻隔包装材料[J].机电信息,2004(21)

上一篇:纳米涂料范文 下一篇:纳米粉体范文