钢纤维混凝土范文

时间:2023-02-26 15:46:10

钢纤维混凝土

钢纤维混凝土范文第1篇

关键词:道路桥梁施工;钢纤维混凝土;技术特点

近年来,我国经济的发展也带动了城市化进入了快速发展的时期,人们对建筑施工质量的要求也达到了新的水平。随着公共基础设施建设的大力推进,建筑技术的不断进步,钢纤维混凝土技术应运而生。钢纤维混凝土技术就是在施工过程中,在混凝土中加入固定量的短钢纤维以增强混凝土的抗拉强度以及承载能力。由于钢纤维在混凝土中均匀乱向分布,对控制普通混凝土中裂缝具有明显的优势,能显著提高混凝土的韧性和强度,有效提高其承载能力、抗冲击性、抗裂性。因此,钢纤维混凝土目前已广泛应用于我国道路桥梁等基础设施的建设,具有重要的现实意义。

1钢纤维混凝土概述

钢纤维混凝土是利用钢纤维降低混凝土中内外力作用下产生的裂缝数量以及膨胀的作用。在作用的早期阶段,水泥基材作为承受混凝土外力的主要载体,出现裂缝后,钢纤维成为载体的主力,该阶段下的钢纤维受力也是有临界值的,超过后材料也将出现较大的变形,破坏材料。同时钢纤维混凝土具有很多方面的优势,其自身抗疲劳和抗压缩特性良好,与普通混凝土相比,可以极大得改善其物理性能,比如增加强度、重量比;大大提高拉伸、弯曲、极限强度;具有很好的抗裂性、耐冲击性等。通过在混凝土中加入适当比例的钢纤维并充分混合均匀,对于道路和桥梁的施工都具有十分重要的实际意义。比如桥梁常由于其重量过大而引起塌陷,如果科学合理地使用钢纤维混凝土材料,就可以有效减少其重量,还能大幅度改善由于温度变化引起的裂纹。另外钢纤维混凝土还具有很强的抗剪切性和抗霜冻耐磨性,具有显而易见的工程优越性。

2钢纤维混凝土施工技术

2.1选择合适的钢纤维材料道路桥梁的施工质量很大程度取决于施工技术,因此在进行钢纤维混凝土施工时,对于钢纤维品种选择,其强度应该和基材强度差不多,拉伸极限应超过480MPa,钢纤维含量在0.46%~1.96%,钢纤维直径通常控制在0.42~0.65mm,最小直径不能小于0.38mm,其长度不能太长,使其长径比能保证钢纤维的机械性能符合施工要求,控制在45~75。另外钢纤维在进行搅拌前需要先与细骨料定量混合均匀或选择较粗直径、更好材料的纤维,重要的是保证钢纤维易分散的特性。2.2设计合适的配料比和分散装置钢纤维混凝土的配合比例应遵循普通混凝土拌合料设计原则进行,也可以根据施工现场的实际情况进行试验,确定混凝土具体的配料比。混凝土和钢纤维的均匀混合也是非常重要的一个环节,为了确保钢纤维和混凝土混合前前保持均匀分散,钢纤维可以通过分散器进入混合器,保持分散机的功率为0.75~1.0kW,分散力优选为20~60kg/min。2.3严格控制搅拌时间对于混凝土和钢纤维的搅拌时间的控制,在搅拌机内要把混合的材料进行干燥搅拌1min。适当加入外加剂或减水剂再湿拌达2min左右,改善混合料,提高施工质量,还能减少水泥用量。2.4选择合适的搅拌机钢纤维混凝土搅拌机有双锥反转出料搅拌机和强制搅拌机两种类型,通常情况下低搅拌功率对增加搅拌机的使用寿命非常有益。当纤维含量高或者坍落度小时,可以适当选用较低的搅拌功率避免混合器过载,延长其使用年限。2.5合理浇注和振捣为了保证钢纤维混凝土良好混合,浇筑和振捣这两个过程很有必要。首先钢纤维混凝土浇注必须连续,而且做到隐藏浇注接头,每次倒料要压在15~20cm以保证钢纤维混凝土的整体连续性。另外,振捣时需要使用插入式振动棒,使钢纤维朝向振动棒的振动方向聚集,形成团簇效应,还可以使用平板振捣器以保证钢纤维的二维分布。在振捣过程中为了保证混凝土的边缘致密,应该让钢纤维纵向带束排列,利于板体传递收缩应力、温度应力和载荷,还需在振捣后将混凝土表面做好抹平光滑工作,压实暴露的钢纤维,防止暴露的刚纤维生锈。2.6做好成型后的维护工作钢纤维的组成包括粗骨料、大砂率,加上一般情况都是乱向分布,不太美观。基于这方面考虑,可以使用真空吸水工艺对钢纤维混凝土路面进行机械平整,防止钢纤维暴露;还可以使用压纹机用来防止尼龙纤维暴露的现象。2.7运输方面对于钢纤维混凝土的运输,考虑到会影响坍落度、含气量以及混合物稠度,应采用泵送。在不能使用的条件下,则应尽量减少运输距离,增大出料口,以防止出现运输过程中的重力下沉,导致钢纤维拌合均匀较差,从而节约成本。

3道路施工中钢纤维混凝土技术的应用

钢纤维可用于减少路面厚度和减少纵向接缝量,而钢纤维混凝土的优势也很明显,如良好的抗冻耐磨性、横向缩缝少,对延长路面使用寿命大有益处,因此在道路施工中已被广泛使用。但同时由于其铺设的薄厚度以及数量少的水平收缩接缝,在施工中道路的使用较为频繁,具有很多类型。3.1复合型钢纤维混凝土路面顾名思义,复合型钢纤维混凝土路面不只一层,通常表现为两层式或三层式,两层型是底层为普通混凝土的道路的上层铺设40%~60%全厚的钢纤维混凝土;三层型是在上下两层钢纤维混凝土的中间再加一层普通混凝土。尽管结构和施工过程比较复杂,需要相关施工人员具有丰富的施工经验,但是这种结构的路面更耐用,通常三层复合型钢纤维混凝土路面应在极端条件的地区使用。另外,这种复合型钢纤维混凝土需要较高的施工成本,通常适用于高度机械化的地区使用。3.2全截面钢纤维混凝土路面全截面钢纤维混凝土对路面厚度的控制,可取普通混凝土道路的46%~52%,一般为50%左右;钢纤维含量范围为0.79%~1.18%,一般为1%左右;通常不会设置纵向缝隙,而横向缝隙之间的空隙最好控制在20cm左右,距离最大不能超过0.5m。3.3碾压钢纤维混凝土路面碾压钢纤维混凝土路面的主要施工方法是沥青混凝土路面的施工方法,将钢纤维置于混凝土中,轧制成型混凝土路面。这种将钢纤维放置在碾压混凝土的方法,可以改善碾压混凝土的力学性能,有效提升路面的韧性和强度,但目前对实现压实度和平整度的统一还存在一些难度。3.4钢纤维混凝土罩面钢纤维混凝土罩面在道路施工中的作用为修复受损的混凝土路面,维修和养护旧的混凝土路面。钢纤维混凝土本身具有良好的建筑材料塑性,对提高混凝土的抗拉、抗弯、抗裂性能都很有帮助。因此,采用钢纤维混凝土罩面修复路面是提高路面的性能和使用寿命的有效手段,不仅减薄表层的厚度、扩大接头间距,而且节省工程造价,具有一定的经济效益和社会效益。钢纤维混凝土罩面包括结合型、直接型、分离型三种,结合型是指将新旧混凝土表层相互作为一个整体结合起到增强整体结构的强度作用;分离型是指新的覆盖层单独作用,不和旧的混凝土粘结,中间还设置了隔离层,独立的层面分别发挥作用;直接型是指将钢纤维混凝土直接加在旧的水泥混凝土表面层,这种方式多用于修补损坏程度较小的旧水泥混凝土路面。

4桥梁施工中钢纤维混凝土技术的应用

4.1改善桥面铺装钢纤维钢筋混凝土作为桥面铺装层具有很多好处,可以有效地加强桥体的刚度和弯曲强度;大大提高桥梁的舒适性和抗裂性等,延长了桥梁的使用年限;改善了桥梁的受力状况,使桥梁能更好地发挥其功能,保证了较高的施工质量水平。对于钢纤维混凝土桥面铺装,其厚度是正常厚度的一半,包括两层和三层结构,两层结构是指钢纤维混凝土作为上层、普通混凝土作为下层;三层结构是指上下层为钢纤维混凝土,中间层为普通混凝土,这种结构施工过程更复杂,具有一定的施工难度,因此采用两层铺设的结构较多。4.2加固桥梁部分结构由于长时间的负荷作用,桥梁难免存在一些问题,比如出现裂纹、表面剥落等,对桥梁结构进行加固十分有必要。桥梁施工中通常采用剪切钢纤维和切削钢纤维两种钢纤维材料,应控制两种材料的产量在1.0%以下,还可以采用转子Ⅱ型喷射机进行钢纤维混凝土喷涂。这种方式是一项有效的科学的技术措施,对提升桥梁的抗震性、满足桥梁结构的总体需要大有益处。此外,为了改善表面的区域下落现象,可以利用钢纤维钢筋混凝土进行部分区域加强工作,使用硫铝酸盐与TS型速凝剂快硬水泥,防止桥梁出现裂缝,在混凝土表面喷砂或凿,增强新旧混凝土完整性。4.3强化钢筋混凝土桩对桩顶或桩尖部分使用钢纤维混凝土可以大大提高桩的穿透性,一方面,能对其抗冲击强度和韧性有一定程度的提高,还能有效降低冲击频率;另一方面也能防止桩尖在打入设定深度之前出现破裂现象,有效地提高了桩尖进土的深度,显着提高打击速度。但是对桥梁整体使用钢纤维混凝土需要巨大的资金成本,因此可以对桩身采用预应力钢筋混凝土或非预应力钢筋混凝土,用于节约施工成本。

5结束语

综上所述,随着我国的道路桥梁建设中不断更新的施工技术,钢纤维混凝土作为一种新型多相复合建筑材料,在抗压、抗弯、抗拉、抗冲击、抗裂等方面发挥了巨大的优越性,因而被企业青睐广泛应用于道路和桥梁施工,对提高建筑施工质量水平意义重大。我国目前钢纤维混凝土技术还处于起步阶段,其理论和应用还有待完善,仍然需要更多的技术人员及专家进行不断探索和研究,优化和改进该技术。文章通过钢纤维混凝土技术在道路和桥梁施工中的具体应用和施工技术的分析,希望能为钢纤维混凝土施工人员中提供一些借鉴。相信在不久的将来,钢纤维混凝土技术将会越来越完善,更加广泛地用于道路和桥梁建设。

参考文献:

[1]林凡康.道路桥梁施工中钢纤维混凝土技术的实际应用分析[J].住宅与房地产,2016,(3):226.

[2]何余良.多梁式钢—混凝土组合小箱梁桥受力特性及试验研究[D].浙江大学,2014.

[3]韩春雨.预应力钢纤维混凝土拼装墩的抗震性能研究[D].重庆交通大学,2013.

[4]贾方方.钢筋与活性粉末混凝土粘结性能的试验研究[D].北京交通大学,2013.

[5]张健.道路桥梁施工中钢纤维混凝土技术应用研究[J].北方交通,2012,(12):99-100.

[6]禹雷.桥面铺装层中钢纤维混凝土应用技术研究[D].郑州大学,2007.

钢纤维混凝土范文第2篇

关键词:钢纤维混凝土;技术;应用

中图分类号:TV431+.3文献标识码: A

一 引言

伴随着混凝土在工程方面使用更加广泛,不能满足工程要求的缺点就越来越明显。针对此情况长期以来,国内外许多专家和学者不断探索改善混凝土的性能的各种方法和途径,提出了一种以传统素混凝土为基体的复合材料钢纤维混凝土。

二 钢纤维混凝土的基本性能

钢纤维混凝土的特点是抗裂,抗拉,抗弯,抗剪,耐磨性能,疲劳强度和抗冻融性能均较普通混凝土有大幅提高。而发生这些变化的是因混凝土中掺入了钢纤维,下面我们就其的基本性能和引发的增强机能进行如下分析。

2.1 钢纤维基本性能

2.1.1钢纤维的类型及特征参数

钢纤维按材质分,有普通碳钢钢纤维和不锈钢钢纤维,其中以普通钢钢纤维用量居多。

2.1.2钢纤维的主要性能

钢纤维的主要性能包括抗拉强度与黏结强度。试验表明,由于普通钢纤维混凝土主要是因钢纤维拔出而破坏,并不是因钢纤维拉断而破坏,因此钢纤维的抗拉强度一般能满足使用要求,而其与混凝土基体界面的黏结强度是钢纤维混凝土性能的主要因素。

2.2钢纤维混凝土的增强机能

目前对于混凝土中均匀而任意分布的短纤维对混凝土的增强机理存在着两种不同的理论解释。其一为美Romualdi提出的“纤维间距机理”;其二为英国的Swamy,mangat等人提出的“复合材料机理”。

三钢纤维混凝土的技术要求

因为不同的纤维类型对混凝土的增韧效果也有差异,还有其他原材料的采用都会影响混凝土的性能,所以我们对其有要求。同时,在一般情况下,纤维掺量影响着纤维对混凝土的增韧效果,而且纤维掺量的增加,会增大经济成本,因此这要求我们按照相关规范进行配合比设计、拌和,按照相关规范进行质量控制和施工。

3.1 原材料的质量要求

钢纤维:表面应洁净无锈无油,无粘结成团现象,保证钢纤维与混凝土的粘结强度,尺寸和抗拉强度符合技术要求。

水泥,骨料,水,外加剂和混合材料应符合国家标准《混凝土结构工程施工及验收规范》中的关规定。

3.2钢纤维混凝土配合比设计

钢纤维混凝土的配合比是指钢纤维混凝土中各组成材料之间的比例关系。

钢纤维混凝土的配合比设计与普通水泥混凝土相比,在水泥混凝土拌合料中掺入钢纤维,主要是为了提高混凝土的抗弯、抗拉、抗疲劳的能力和韧性。

3.3钢纤维混凝土的拌和

对于钢纤维混凝土宜采用机械拌和。当钢纤维体积率高,拌和物稠度较大时,搅拌机一次拌和量不大于其额定拌和量的80%。

3.4钢纤维混凝土的质量控制

钢纤维混凝土的质量检验除应对原材料配合比施工主要环节按现行有关混凝土结构工程施工与验收规范的规定执行外,尚应检验下列项目:对钢纤维进行质量检验。取样制作抗压,抗折强度标准试件,坍落度不大于50mm的钢纤维混凝土用震动台振实;大于50mm的用木槌振实。抗压试块采用边长150mm的立方体为标准试件标准养护28天测定其抗压强度,抗折试件采用150m×150mm×550mm的标准试件经标准养护,在龄期达90天时进行测试。

3.5钢纤维混凝土的设计与施工要求

我国于1996年出版了《钢纤维混凝土试验》CECS13:89和《钢纤维混凝土结构设计与施工规程》CECS38:92,但本规程只对钢纤维混凝土结构不同于混凝土结构设计与施工的专门要求作出规定。在进行钢纤维混凝土结构设计和施工时,尚应与相应的规范配合使用。

四钢纤维混凝土的应用技术

钢纤维混凝土作为一种新型复合材料,以其优良的抗拉、抗弯、阻裂、耐冲击、耐疲劳、高韧性等物理力学性能,目前已被广泛应用于建筑工程、水利工程、公路桥梁工程、公路路面和机场道面工程、铁路公程、管道工程、内河航道工程、防暴工程和维修加固工程等各个专业领域。

4.1钢纤维混凝土在水利工程应用

水利工程钢纤维混凝土在水利工程中的应用比较广泛,主要将其用于受高速水流作用以及受力比较复杂的部位,水利工程中相关方面使用钢纤维混凝土的有:支护工程、储水、防渗、输水管道工程、高速水流冲刷磨损部位、处于腐蚀环境中的构件、动力荷载作用部位和抗震结构节点、复杂应力部位等。

4.2钢纤维混凝土在道路和桥梁工程应用

钢纤维混凝在道路和桥梁工程方面,主要广泛应用于路面、桥梁、机场跑道等工程中,包括新建及修补工程。钢纤维混凝土较普通混凝土有较好的韧性,抗冲击、抗疲劳性。它可使面层厚度减少,伸缩缝间距加长,使用性能提高,维修费用减低,寿命延长。

4.3钢纤维混凝土在铁路工程应用

在铁路工程方面,钢纤维混凝土主要用于预应力钢纤维混凝土铁路轨枕、双块式铁路轨枕及抢修铁路桥面防水保护层中。铁路工程承受较大的荷载、较高的速度和数万次的振动,所以要求混凝土必须具有较高的强度、较高的抗冲击性及较大的塑性。这正好利用了钢纤维混凝土的抗冲击性及较好的塑性。钢纤维混凝土的应用,使维修工作量大为减少,并提高了线路的使用寿命,效果良好。

铁路方面在西康线椅于山隧道工程采用湿喷钢纤维混凝土取得成功,由于钢纤维混凝土的抗压、抗拉和抗剪强度大,具有很强的支护功能。

4.4钢纤维混凝土在港口及海洋应用

钢纤维混凝土在海洋工程中的使用主要是钢纤维混凝土的腐蚀问题,所以有待进一步研究,但在日本和挪威的使用经验是令人鼓舞的。日本钢铁俱乐部采用钢纤维混凝土作钢管桩防腐层,在海水中浸泡10年,钢纤维混凝土防腐完好,钢管表面无锈蚀,仍有金属光泽。挪威将钢纤维混凝土用于北海海底输气管道的隧道衬砌、Forsmark核电站海底核废料库的支护、海洋平台后张预应力管道孔的封堵以及码头混凝土受海水腐蚀部位的修补等。

五钢纤维混凝土的经济和社会效益

根据各个工程方面事例,我们从钢纤维混凝土与普通混凝土性能对比上就可以直观的看出产生的经济效益。综合分析,对于旧混凝土路面,若采用钢纤维混凝土进行罩面修复,则一次性投资的费用比挖掉重建混凝土路面要节省许多。同样,从一次性投资、使用年限、维修费用、资金的时间价值来全面评价钢纤维混凝土路面工程的经济效益,与新铺沥青混凝土路面评价综合效益,钢纤维混凝土路面虽一次性投资较前者高,但从其维修费用、使用年限的不同考虑,以及和资金的时间效益,用年成本法计算其等值年金,结果表明钢纤维混凝土路面每年支出的费用比沥青混凝土路面要低35%。采用钢纤维混凝土修补法,不但可使钢纤维混凝土的质量及其增强效果得到保证,而且还可提前开放交通,具有显著的经济效益和社会效益。

由以上可以看出钢纤维混凝的优越性,不仅仅体现在结构性能上,还在经济效益和社会效益上。

六 结语

钢纤维混凝土的优越性能及在工程中成功的应用表明:钢纤维混凝土不但可以解决钢筋混凝土难以解决的裂缝、耐久性等,而且对于各个工程方面可以大幅度降低造价。因此,钢纤维混凝土在我国建设工程中具有广阔应用前景。

钢纤维混凝土范文第3篇

【关键词】钢纤维混凝土;特质;施工应用

钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性。

1.钢纤维的品种和特性

钢纤维与基体的粘结性能是关系到钢纤维混凝土性能的最重要的因素。高强钢丝切断端钩型纤维、钢锭铣削端钩型(一面有麻面)纤维、剪切异型(端钩型、大头型、压痕型)纤维、低合金钢熔抽型(直型、大头型)纤维,因其性能优良且国内已有工程经验,故将其列入规程。剪切直型、微扭型和波纹型由于生产工艺简单成本相对较低,在剪切过程中使纤维表面不规则有利于与基体粘结,故规程中仍予以保留。注意到低碳钢板剪制的纤维,在基体开裂后其扭曲或波纹很容易拉直,其增强增韧效果与直形差别很小,故使用中可划归一类。

钢纤维强度划分三个等级:380MPa(380~599MPa),600MPa(600~999MPa),1000MPa(不小于1000MPa)。

为防止钢纤维在纤维混凝土拌合过程中被骨料碰撞折断,钢纤维本身不能太脆。要求对钢纤维做弯折检验:钢纤维应围绕直径3mm的圆棒弯折90°不折断。

2.钢纤维几何参数和掺量范围

对于钢纤维混凝土拌合物的施工性能,纤维短而粗、长径比小、掺量低有利;对于钢纤维混凝土强度和韧性,纤维细而长、长径比大、产量高有利。对于施工有特殊要求的如泵送混凝土、湿喷法喷射混凝土以及低流态混凝土(如轨枕),钢纤维不宜太长,掺量不宜太高;对于韧性要求较高或承受地震作用、动力荷载的情形,纤维宜长些,掺量宜高些。

需要特别指出的是:钢纤维的长度还应该与基体混凝土所用骨料的粒径相匹配,不应小于骨料粒径的1.5倍。骨料粒径不宜大于20mm,粒径大于20mm时应通过专门试验确定钢纤维的品种、尺寸和掺量。

表1给出的是参考范围,具体应通过设计计算和纤维混凝土试验确定。

表1 钢纤维几何参数参考范围

3.钢纤维混凝土的基本性能

3.1钢纤维混凝土的力学性能

普通钢纤维混凝土的纤维体积率在1%-2%之间,较之普通混凝土,抗拉强度提高40%-80%,抗弯强度提高60%-120%,抗剪强度提高50%-100%,抗压强度提高幅度较小,一般在0-25%之间,但抗压韧性却大幅度提高。

3.2钢纤维混凝土抗折、抗压强度大

钢纤维混凝土的抗剪强度、劈拉强度、抗弯强度等相比普通混凝土均有大幅度的提高。其中,抗弯强度抗拉强度提高了50%~80%,抗剪强度提高50%~80%,抗折强度提高15%~35%。特别适用于市政道路路面的维修。

3.3降低变形性能

与素混凝土相比韧性大大提高。在一般的纤维掺量下,弯曲冲击韧性可提高2倍~4倍,抗压韧性可提高2倍~7倍,抗弯韧性甚至可提高几倍到几十倍;板式试验落锤法击碎试验所测得的冲击韧性可提高几倍到几十倍。

3.4减薄面层厚度、加大缩缝间距

钢纤维混凝土弯曲耐疲劳、强度高、抗冲击性能好,在相同载荷条件下,比普通混凝土可以减薄铺设厚度约50%~60%。普通的缩缝间距为4m~6m左右,但是渗入2%的钢纤维时,缩缝的间距就可加大到30m左右,这样不仅可以使维修费用大大减少,而且还可以大大减轻车辆通过缩缝时的振动。

3.5延长路面使用寿命

由于钢纤维混凝土抗疲劳性能优良,抗裂能力强,变形能力大,且抗冻融性能也很好。这些优点都有利于延长处于重要地位的道路路面的使用寿命。

4.钢纤维混凝土在道桥施工中的应用

4.1路面修补

钢纤维混凝土适用于普通水泥混凝土路面出现破碎、断裂等的质量问题的修补。在钢纤维混凝土浇筑前,即在破损板及板底脱空破裂的旧混凝土板块凿除后,对部分板底基层进行补强处理。被清除后的基坑一律用素混凝土进行处理。

4.2支护工程

钢纤维混凝土由于抗拉、抗弯、抗剪强度高,能承受较大的围岩和土体的变形作用而保持良好的整体性,因此可用于隧洞支护、山体护坡等工程。

4.3处于腐蚀环境中的构件

钢纤维混凝土具有良好的耐腐蚀性能,可用于河水等腐蚀环境中的基础、输水管道等构件的防蚀层或结构层。

4.4应力复杂部位

钢纤维混凝土中的钢纤维一般呈三维乱向分布,沿每个方向都有增强和增韧作用。钢纤维对混凝土结构复杂应力区增强是非常有利的,而且容易浇筑成型,比钢筋更能适应各种复杂的结构形式。此外,钢纤维限制混凝土裂缝的作用也是钢筋不能相比的。

4.5桥梁与隧道工程

用纤维混凝土作桥面铺装层可有效地抑制和减少裂缝,增强桥面的防水性和抗破碎能力,减缓钢筋锈蚀和延长结构的寿命。

5.施工控制要点

钢纤维混凝土路面质量的优劣,在很大程度上取决于施工质量。因此,钢纤维混凝土路面施工,除了满足普通混凝土的施工要求外,重点注意以下几个方面的问题。

5.1设置钢纤维分散装置

由于钢纤维一次性直接投入搅拌机易出现结团现象,为使钢纤维充分分散,在搅拌机上安装上振动式钢纤维分散机,分散机功率为1.0kW,分散能力约为40kg/min。由于分散机安装在搅拌机上,分散时间较长,增加了搅拌时间,生产效率有所降低。

5.2搅拌投料顺序和搅拌时间

为防止钢纤维结团,采取先干后湿的工艺。投料程序按砂一钢纤维一石子一水泥的顺序投于料斗。首先在搅拌机里干拌1~2min,再加水湿拌2min左右。总搅拌时间控制在6min内。搅拌时间过长会形成纤维结团,且每次的搅拌量控制在搅拌机容量的1/3以下。

5.3采用强制式搅拌机

钢纤维混凝土搅拌机,使用双锥反转出料搅拌机,容量为250L.由于采用1.2%的钢纤维掺量,且坍落度较小,为不使搅拌机超负荷工作,适当降低搅拌机的利用率。 5.4运输

钢纤维混凝土运输采用自卸运输车。选择钢纤维混凝土的搅拌场地时尽量缩短运输距离,并注意选择合适的自卸运输车辆,以保证浇筑时的卸料高度不得超过1.5m,确保混凝土卸料过程中不发生离析现象。同时,宜注意运输时的温度,避免造成混凝土的施工和易性下降。

5.5摊铺与振捣

钢纤维混凝土在浇注时,不得有明显的浇注接头,每次倒料必须相压l5-20cm,使钢纤维混凝土保持整体连续性。钢纤维混凝土路面采用摊铺机摊铺,辅以人工整平。为确保钢纤维的二维分布,使用平板振动器振捣成型。为保证边角混凝土密实,使用插入式振动棒顺路线方向插入,振捣持续时间以混凝土停止下沉、不再冒气泡并泛出泥浆为准,同时防止过振。

5.6抹面、压纹

将外露的钢纤维压入混凝土中,同时在抹平的钢纤维混凝土表面采用滚式压纹机沿路线横断面方向压纹l-2mm。当钢纤维混凝土养生强度达到设计强度约50%时,用切割机切缝,缝深3cm,缩缝设置为5m/道,与旧缝对齐。并保持施工缝与胀缝或缩缝设计位置吻合,施工缝与路中线垂直,不设置传力杆。对胀缝、缩缝均采用l0号石油沥青填缝。

6.结语

钢纤维混凝土范文第4篇

Abstract: the steel fiber concrete is a new type of, with good mechanical properties of multiphase composite material engineering. Can apply city of the rapid development of the economy, high grade highway and bridge construction pace of building materials speed increasingly requirements. This paper the performance of the steel fiber concrete road &bridge construction technology and carry out the research.

Keywords: road &bridge construction; Steel fiber concrete; Construction technology; explore

中图分类号:U448文献标识码: A 文章编号:

近年来,随着科技的迅猛发展,钢纤维混凝土由于具有施工简便,能够缩短工期,价格相对其他材料低廉等优点,在道路路面,桥梁结构,房屋建设等诸多工程领域得到广泛应用。

一、钢纤维混凝土的构成及特点

1、构成。钢纤维混凝土是一种纤维材料与颗粒材料混杂的复合材料,是在普通混凝土中掺入乱向分布的短钢纤维,再经过硬化从而制得的一种新型的多相复合材料。

2、特点。一是乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,使其韧性发生了变化。因此使混凝土的抗弯、抗冲击、抗拉、抗冻、耐磨性能和疲劳寿命等都得到了大大增强。这些性能是能满足路桥施工的必备条件,因此钢纤维混凝土在路桥工程中得到了广泛的应用。二是普通钢纤维混凝土的纤维体积率在1%—2%之间,较之普通混凝土,抗拉强度提高40%—80%,抗弯强度提高60%—120%,抗剪强度提高50%一100%,抗压强度提高幅度较小,一般在0—25%之间,但抗压韧性却大幅度提高。

二、在路桥施工中应用钢纤维混凝土1、道路施工。通常情况下,钢纤维混凝土主要用于铺设全截面钢纤维混凝土路面、复合式钢纤维混凝土路面、压钢混凝土路面等,它能减薄铺装的厚度,良好的耐磨性能、抗冻融性能使其应用范围广,能有效减少路面横向缩缝少,甚至铺筑不设纵缝的路面等等,优势明显。2、桥梁施工。一是在桥梁施工过程中,因钢纤维混凝土有良好的抗裂性、耐久性、有效控制结构性等特点,目前被广泛应用于铺设桥面、建造桥梁上部荷载部位、加固桥梁墩台等结构部位上。在相同的荷载条件下,钢纤维混凝土的使用厚度可以减少30%~50%,不但可以降低了桥梁自身的重量,而且减少了工程成本。二是优化桥梁上部承受荷载部位,有效降低结构变形程度,减轻桥梁自重,推动桥梁整体结构向轻型化、大跨度方向发展。这样不但减少上部材料用量,桥墩数量也相应减少,降低造价;而且桥梁结构性能更加良好,造型更加美观。三是我们知道长时间的动载作用导致桥面和桥梁墩台表层剥落及板裂缝病害,为此我们可以使用转子Ⅱ型喷射机向桥面和桥梁墩台喷射5-20cm 钢纤维混凝土,从而使结构的整体性与抗震性要求得以满足。目前桥面和桥梁墩台的修补多使用的是剪切钢纤维,掺入量是1.0%;使用硫铝酸盐与 TS 型速凝剂快硬水泥从而使早期桥梁每个部位的抗裂性能得以提高。四是钢纤维混凝土的应用能够使得桩顶或桩尖局部得到增强,大大增加桩的穿透力,减少锤击的次数,对于打击速度会有极大提升。3、衬砌隧道和边坡防护加固可以采用喷射钢纤维混凝土。在衬砌隧道时喷射钢纤维混凝土是近年来使用的一种有效的技术,该技术的运用能够加强结构整体性和防止隧道渗漏水的作用。在边坡岩石节理裂隙发育的地质不良地段,采用钢纤维混凝土支护能够对边坡岩石进行加固。三、钢纤维混凝土施工方法

(一)钢纤维混凝土的制作

1、钢纤维分散装置的设置。由于钢纤维一次性投入搅拌机易出现结团现象,不能保证钢纤维充分均匀的分散,为此应使用钢纤维分散机后再进入搅拌机。一般情况下分散机功率宜为0.75 kW -1.0kW,分散力宜为20kg/min-60kg/min。在进行搅拌前要把钢纤维与细骨料定量拌合均匀或选择直径较粗、材质较好的纤维,并在料斗入口处设置振动筛。2、钢纤维混凝土形成工艺。采取先干后湿分级投料的工艺。其工艺应按砂钢纤维碎石水泥的顺序在搅拌机内将混和料先干拌1分钟,之后加外加剂和水湿拌2分钟。3、搅拌机的选择。一般情况宜使用双锥反转出料式和强制式搅拌机。为防止搅拌机超负荷工作,当纤维坍落度较小和掺量较高时,相应有所降低搅拌机的利用率。4、钢纤维混凝土浇注和振捣。一是为保持路桥整体的整体性和连续性每次倒料必须相压 15-20cm。二是必须连续不间断进行对钢纤维混凝土的浇注,防止出现缝隙。三是插入式振动棒进行振捣应使用,在振捣棒插振后不得出现没有钢纤维的空洞、穴坑、沟槽。钢纤维混凝土路面的铺设,对振捣棒组的振捣频率有要求,振捣棒组不得插入路面内部振捣。

(二)钢纤维混凝土施工方法

钢纤维混凝土具有砂率大、纤维乱向分布、粗骨料细的特点, 因此钢纤维混凝土路面宜采用机械抹平以防止钢纤维外露。为避免拉毛产生纤维外露现象可采用压纹机压纹工艺。拆模后对漏振或纤维外露进行及时处理。1、 接缝施工。钢纤维混凝土有较好的抗裂性、收缩性。施工路段有封闭交通的条件的,可采用混凝土摊铺机做成不设纵缝的整幅式。钢纤维浇筑达设计强度50%后切锯缩缝。2、运输。钢纤维混凝土在运输过程中,坍落度和含气量都会有损失,拌和物稠度下降。由于在运输时受到振动使钢纤维下沉,影响了钢纤维混凝土的均匀性。因此钢纤维混凝土的运输距离应尽量缩短,料斗出口尺寸要大一些。有条件时也可以采用泵送。总之,在施工过程中要重视钢纤维混凝土的施工,要充分发挥钢纤维混凝土路用性能和降低工程造价,要开发砂浆渗浇高含量钢纤维和采用聚合物浸渍钢纤维混凝土进一步提高钢纤维混凝土的物理力学性能。 我们相信随着钢纤维生产技术的不断进步和基础理论的不断完善,钢纤维混凝土在路桥工程的应用将进一步拓宽。

参考文献:

钢纤维混凝土范文第5篇

关键词:钢纤维混凝土;修补工程;下穿路面工程;应用;发展

Abstract: The steel fiber concrete is in the ordinary concrete mixed with a certain amount of short and fine steel fiber composed of a novel high strength composite material. Because the steel fiber block matrix cracks in concrete, not only has the excellent properties of ordinary concrete, and has good bending resistance, impact resistance, fatigue resistance and low shrinkage, good toughness, wear resistance and strong features. It not only can make the surface layer thinning, crack spacing to increase, improve pavement performance, prolongs the service life of the pavement, but also can reduce the engineering cost, shorten the construction period.

Key words: steel fiber concrete; remedial works; beneath the pavement engineering; application; development

中图分类号:[TU528.37]文献标识码: A 文章编号:2095-2104(2012)10-0020-02

随着国民经济建设和交通事业的飞速发展,城市道路和国道干线公路上的车辆荷载及密度越来越大,行驶速度越来越快,致使路面的损坏也日趋严重起来。特别是对一些下穿道路、损坏的水泥混凝土路面而言,它不仅翻修投资大,且施工周期较长,严重影响交通畅通及行车安全。如用普通水泥混凝土修复路面虽有强度高,板块性好,有一定的抗磨性及承受气象作用的耐久性好等特点,但它的最大缺陷是脆性大、易开裂、抗温性差,路面板块容易受弯折而产生断裂,所以就要求路面面板应有足够的抗弯、抗拉强度和厚度。0000用钢纤维混凝土修筑路面,就是意将钢纤维均匀地分散于基体混凝土中(与混凝土一起搅拌),并通过分散的钢纤维,减小因荷载在基体混凝土引起的细裂缝端部的应力集中,提高整个复合材料的抗裂性。同时由于混凝土与钢纤维接触界面之间有很大的界面粘结力,因而可将外力传到抗拉强度大、延伸率高的纤维上面,使钢纤维混凝土作为一个均匀的整体抵抗外力的作用,显著提高了混凝土原有的抗拉、抗弯强度和断裂延伸率。特别是提高了混凝土的韧性和抗冲击性。

钢纤维混凝土

钢纤维混凝土(Steel Fiber Reinforced Concrete 简称SFRC)是在普通混凝土中掺入少量低碳钢、不锈钢和玻璃钢的纤维后形成的一种比较均匀而多向配筋的混凝土。钢纤维的掺入量按体积一般为l-2%,而按重量计每立方米混凝土中掺70-100Kg左右钢纤维,钢纤维的长度宜为25-60mm,直径为0.25-1.25mm,长度与直径的最佳比值为50-700。

钢纤维混凝土范文第6篇

[关键词]桥梁工程;钢纤维混凝土;施工技术

中图分类号:TU74文献标识码: A

随着桥梁工程建设的不断发展,钢纤维混凝土作为一种新型材料以性能的优越性被广泛应用于桥梁工程中,并取得了良好的效果。因此,重视钢钎维混凝土技术的总结运用显得尤为必要。

1 钢纤维混凝土的主要特性

1.1 抗裂、抗剪性能强

传统混凝土开裂荷载与极限荷载无明显差异,但钢纤维混凝土即使出现开裂荷载,其荷载还是能够保持增大趋势。在一定程度上来说,如果钢纤维混凝土体积增大,那么其开裂荷载、极限荷载与韧性均能增大。对钢纤维混凝土的剪切性能进行直接剪切试验检验,实验数据结果表明:钢纤维混凝土基体错动移位后,仍然具有良好的承载能力,承载强度为400~800mpa[1]。

1.2 抗冻、耐磨性能强

钢纤维具有较强的伸缩能力,可以随着温度的变化伸缩,因此,对比传统混凝土,钢纤维混凝土能够很好的抑制由于温度应力导致的桥梁桥面裂缝和扩张情况,这表明钢纤维混凝土抗冻、耐磨性能强。

1.3 抗压、抗拉、抗弯、抗冲击性能强

钢纤维混凝土主要由钢纤维和传统混凝土构成,在混凝土中,钢纤维不规则分布,这样的分布有利于加强钢纤维混凝土抗压、抗拉、抗弯、抗冲击性能。实验研究钢纤维混凝土在桥梁施工中的应用,结果表明:在混凝土中适当加入钢纤维,可以有效提高50%~150%抗弯与40%~50%单轴抗拉的极限强度,若钢纤维在混凝土中的含量为0.8%~2.O%,抗冲击可达普通混凝土的50~100倍极限强度。在钢纤维混凝土中,钢纤维消耗量很小,比例约为0.8%~2.0%,钢纤维本身并不能有效提高混凝土抗压强度,但在混凝土中适当加入钢纤维后,混凝土整体抗压破坏形式出现明显变化,虽然受到破坏后会碎,但不会散,因此混凝土结构抗压性能显著加强。

1.4 改善混凝土变形性能

在混凝土中适当加入钢纤维,可以有效改善混凝土长期收缩变形性能,且能显著提高混凝土抗拉弹性模量,此外,还能使混凝土收缩率降低10%~30%。

2 钢纤维混凝土配合比设计

钢纤维混凝土施工配料主要有水泥、卵石、砂、钢纤维、外加剂、掺合料等,水泥选用型号规格为P.O.42.5的普通硅酸盐水泥;卵石型号规格为5~25mm,含泥量低于1%;砂型号规格为中砂,含泥量低于3%;钢纤维型号规格为长度60mm、直径0.9mm,最低抗压强度为1000N/m2型号规格为泵送剂;掺合料型号规格为I级粉煤灰。钢纤维混凝土的配料选用标准为:

2.1 加强控制钢纤维长径比,钢纤维长度不宜过长,最佳直径为0.45mm~0.70mm,以保证钢纤维混凝土力学性能尽可能符合施工和易性要求。

2.2 适当采用减水剂或外掺剂,使混凝土施工和易性得到改善,同时降低水泥用量及成本。

2.3 必须确保钢纤维无油污、锈渍、碎屑与杂质等。

2.4 钢纤维品种与基材强度相适应,且抗拉极限强度不低于500MPa。

2.5 钢纤维混凝土中钢纤维最佳含量为0.5%~2.O%。

2.6 采用10mm~20mm粒径的主骨料,确保钢纤维与基体结合的牢固度。

2.7 采用搅拌机拌和钢纤维混凝土时,其砂率应比相同标号同类传统混凝土高,而且控制钢纤维长径比为50~80[2]。

3钢纤维混凝土施工技术

3.1摊铺、整平

①将钢纤维连续、均匀在面板中摊铺。

②通过分散机均匀分散钢纤维后,加入搅拌机。

③摊铺时掺和物塌落度应保持一致。

④投料搅拌时采用先干后湿方式,并严格控制搅时间。

⑤摊铺同一道路作业时,应尽可能持续摊铺与浇筑。摊铺工作完成后,必须进行整平、初步压实工作。

3.2 振捣

纵向条状集束排列钢纤维,可以加强混凝土边缘的密度。采用机械振捣钢纤维混凝土,可以增加其强度与密实度,有效保障钢纤维混凝土路面的强度与抗裂性。在机械振捣过程中,应按照一定顺序和频率进行振捣,不能出现过振、漏振等问题,而且钢纤维严禁出现空洞、沟槽等现象。

3.3 整形

钢纤维混凝土的特点主要有纤维分布不规则、含砂率大、粗骨料稀等,为免钢纤维外露,应采用机械进行抹平整形。与此同时,采用压纹机压纹技术,可以避免或减少拉毛与拆模后出现的钢纤维外漏、外露现象。

3.4 施工注意事项

①加快施工进度或适当增加水分,可使钢纤维混凝土延迟凝结、硬化。

②为免影响钢纤维混凝土强度,运输和摊铺时间必须在规范要求范围内。

③摊铺或浇筑过程中,必须经过科学计算,才能增加掺和物,如水、外加剂等。

4钢纤维混凝土施工技术运用

4.1 桥梁工程中的运用

桥梁工程在使用的过程中,在时间周期的作用下,受到来自地面上部的荷载力比较大,经常需要承载很大的重力,并且在结构方面的特殊性,所以钢纤维混凝土应用的比较广泛。主要应用的部位是在桥梁和墩台的外部位置喷射五到二十厘米厚的钢纤维混凝土,以此来提高桥梁的承载力。在长期的使用过程中,可以有效的加强桥梁的强度,抗压力等相关方面的性能,避免桥梁发生裂缝等现象。

4.1.1 桥面铺装

在桥面铺装钢纤维混凝土,可提高桥面耐久性、抗裂性与舒适性,增强桥梁刚度与抗折强度,并减少铺装厚度,使结构自重降低,很好的改善桥梁受力状况。此外,还能有效提高桥面抗冲击力,加强混凝土结构和伸缩缝间的连接强度,减少桥面出现坑槽、剥落、裂缝等情况,有效延迟桥梁损坏速度[3]。

4.1.2 桥墩结构局部加固

在长期动载作用下,若桥墩、桥面板出现裂缝、表层剥落等问题,为满足桥梁结构抗震性与整体性要求,可采用转子型喷射机向出现问题的部位喷射5cm~20cm钢纤维混凝土。桥墩结构局部加固方式为:①采用10%掺量的剪切钢纤维;②喷砂或凿毛旧混凝土表面,加强新旧混凝土整体密实性、牢固性;③为提高早期抗裂性能,适当采用硫铝酸盐快硬水泥、TS型速凝剂。

4.1.3 桥梁上部承载部位

采用钢纤维混凝土加强桥梁上部应力集中的部位,可有效改善桥梁结构受力性能,控制结构变形的同时降低结构自重,使桥梁结构逐渐呈现轻型化、大跨度发展趋势。在桥梁上部结构采用钢纤维混凝土,可以提高结构承载力与抗变形性能,而且能减少上部结构材料用量与下部墩台数量,进而有效降低施工造价,提高经济效益。

4.2 道路工程的运用

在道路施工工程中,可以根据实际状况的不同,将钢纤维混凝土施工进行分类,主要有复合式、碾压式和全截面式。

使用钢纤维混凝土的优势是要比普通的混凝土节省材料,以全截面式为例的话,可以节省将近一半的材料;在双向行驶的车道工程中,不需要进行纵缝的设置,各横缝的间距保持在50cm之内,间隔距离在20cm~30cm之间;三层式复合路面施工时,钢纤维混凝土材料的掺入量最好保持在0.8%到1.2%左右。而双层式的路面施工是指将钢纤维混凝土材料铺设在道路路面的上部位置,路面的施工厚度最好占整个路面厚度的40%到60%左右。

5 结语

随着人类社会的快速发展,桥梁工程的建设日益加快,桥梁的运用越来越广泛,而广泛应用于桥梁施工中的钢纤维混凝土质量需要随之提高,所以,重视钢钎维混凝土的施工技术,重视钢钎维混凝土的质量控制点十分重要,只有这样,才能保证工程质量,确保安全。

[参考文献]

[1] 邹孟义.桥梁施工中钢纤维混凝土的施工技术分析[J].广东科技,2010年06期

[2] 张湘文.桥梁施工中钢纤维混凝土的施工技术分析[J].四川建材,2008年02期

[3] 林建辉.浅谈钢纤维混凝土在桥梁施工中的应用[J].China’sForeignTrade,2011年14期

钢纤维混凝土范文第7篇

关键词:钢纤维混凝土;研究现状;增韧机理

Abstract: This paper describes the characteristics of the definition of steel fiber reinforced concrete (SFRC) and the development research of SFRC was discussed In addition, at last the steel fiber reinforced concrete toughening mechanism was analyzed.

Key words: steel fiber reinforced concrete, development research, toughening mechanism

中图分类号:TU37文献标识码:A 文章编号:

1. 绪论

21世纪,混凝土是人类社会最广泛使用的大宗建筑材料,与其他建筑材料相比具有材料来源广、工艺简单、适应性强、施工方便等特点。但是由于混凝土材料本身存在收缩大、脆性大、易开裂,以及断裂韧性低等本质性的弱点,制约了混凝土的进一步发展。随着水泥基材料抗压强度的大幅度提高,如何增加水泥基材料的抗裂、抗冲击、抗拉及延性等性能,成为工程界所关心的问题。目前国际上基本上一致认为纤维混凝土是提高混凝土抗裂性和韧性的有效办法。我国著名混凝土专家吴中伟教授生前曾多次指出,复合化是水泥基材料高性能化的主要途径,纤维增强是其核心,复合化的技术思路—“超叠加效应”,对混凝土材料的高性能化具有重要意义。

自20世纪70年代以来,纤维增强水泥基复合材料已日益引起材料界与工程界的广泛重视。随着研究工作不断深入,新品种相继问世,并大量应用于工程领域。纤维混凝土是国际上近年来发展很快的新型水泥基复合材料,以其优良的抗拉抗弯强度、阻裂限缩能力、耐冲击及优良的抗渗、抗冻性能而成功地应用于军事、水利、建筑、机场、公路等领域,目前它已成为研究较多、应用较广的水泥基复合材料之一。研究表明:混凝土基材中掺入纤维是提高混凝土韧性、抗冲击性能和抑制砂浆塑性收缩开裂的一条有效途径。

2. 钢纤维混凝土(SFRC)的概述

钢纤维混凝土(Steel Fiber Reinforced Concrete,简称SFRC)是近20年迅速发展起来的一种新型复合材料。它是在普通混凝土中掺入乱向分布的钢纤维所形成的一种纤维型与颗粒型相混合而成的复合材料。除抗压强度外,它的其它物理力学性能都比普通混凝土有显著的改善和提高。在受力过程中,钢纤维发挥其抗拉强度高,而混凝土发挥其抗压强度高的优势,两者各施所长,不仅提高了混凝土的抗拉、抗折、抗剪强度,而且由于它的阻裂性能使原来本质上是脆性材料的混凝土呈现出很高的抗裂性、延性和韧性。

研究表明钢纤维混凝土具有以下的性能特点:

(1)具有较高的抗拉、抗弯、抗剪和抗扭强度。在混凝土中掺入适量钢纤维,其抗压强度提高10%~80%(C50以上混凝土提高幅度显著),抗拉强度提高50%~100%,抗弯强度提高50%~80%,抗剪强度提高50%~100%。

(2)具有卓越的抗冲击性能。材料抵抗冲击或震动荷载作用的性能,称为冲击韧性,在通常的纤维掺量下,冲击抗压韧性可提高2~7倍,冲击抗弯、抗拉等韧性可提高几倍到几十倍。

(3)收缩性能明显改善。在通常的纤维掺量下,钢纤维混凝土较普通混凝土的收缩值降低7%~9%。

(4)抗疲劳性能显著提高。钢纤维混凝土的抗弯和抗压疲劳性能比普通混凝土都有较大改善。据研究表明当掺有1.5%钢纤维抗弯疲劳寿命为1×106时,应力比为0.68,而普通混凝土仅为0.51;当掺有2%钢纤维混凝土抗压疲劳寿命达2×106时,应力比为0.92,而普通混凝土仅为0.56。

(5)混凝土耐久性能提高。由于钢纤维混凝土抗裂性、整体性好,因而耐冻融性、耐热性、耐磨性、抗气蚀性和抗腐蚀性均有显著提高。据研究表明,掺有1.5%的钢纤维混凝土经150次冻融循环,其抗压和抗弯强度下降20%,而其他条件相同的普通混凝土却下降60%以上,经过200次冻融循环,钢纤维混凝土试件仍保持完好。掺量为1%、强度等级为C35的钢纤维混凝土耐磨损失比普通混凝土降低30%。

3钢纤维混凝土的发展情况

近年来,国内外对全掺钢纤维混凝土的力学性能和结构性能做了大量的研究。1910年美国的H. F. Porte曾发表了有关以短纤维增强混凝土的研究报告,建议把短纤维均匀分散在混凝土中用以强化基体材料。1911年美国的Graham曾把钢纤维掺入普通钢筋混凝土中得到了可以提高混凝土强度和稳定性的结论。此后,直到1940年,美、英、法、原联邦德国等国家先后公布了许多关于钢纤维混凝土方面的专利,仅就国外文献而言,在我国较有影响的就有英国学者D. J. Hannant、美国籍学者P. N. Balaguru和S. P. Shah等人的专著,有的还被译为中文。掺加钢纤维来提高混凝土的耐磨性和抗裂性、钢纤维混凝土制造工艺、改进钢纤维形状以提高纤维与混凝土基体的粘结强度等。日本在第二次世界大战期间,由于军事上的需要,也曾进行过有关钢纤维混凝土方面的研究,但当时均未达到实用化的程度。

20世纪70年代,美国Battele公司研制出一种划时代的钢纤维制作方法,即熔融拔出法(Melt-Extraction),制造出廉价钢纤维,钢纤维混凝土的实用化才从根本上取得了进展,1966年美国混凝土协会成立纤维混凝土委员会(ACI544委员会)。1973年,在加拿大渥太华,由美国ACI544委员会举办了第一次纤维混凝土的国际会议,而后于1975年、1978年在伦敦又相继召开了纤维混凝土的国际性学术讨论会。此后20多年,钢纤维混凝土在发达国家和发展中国家的开发研究受到普遍重视,尤以日本、美国、英国进展最快。

近年来科研工作者对纤维混凝土的研究有了更新的进展,1993年中国工程建设标准化协会批准实施《纤维混凝土结构设计与施工规范》,规范的颁布极大地推动了纤维混凝土在各种工程以及建筑制品等领域的推广应用。近年来,国内一些大的机场跑道陆续采用钢纤维混凝土做路面,使用寿命可提高到30年以上,取得了良好的效果。

4纤维增强机理

在钢纤维混凝土中,纤维的主要作用是限制在外力作用下混凝土基体中裂缝的扩展。在受荷(拉、弯)初期,混凝土基体与纤维共同承受外力,前者是外力的主要承受者;当基体开裂后,横跨裂缝的纤维成为外力的主要承受者。若纤维体积率超过某一临界值,整个复合材料可继续承受较高的荷载,并产生较大的变形,直至纤维被拉断或纤维从基体中被拔出,以致复合材料破坏。因此,与普通混凝土相比,钢纤维混凝土具有较高的抗拉和抗弯极限强度,而尤以韧性提高的幅度为大。根据国内外研究表明纤维增强混凝土机理主要为以下两方面:

(1)复合材料机理。该机理将钢纤维作为增强材料,应用复合材料混合法则推导纤维混凝土的应力、弹性模量,并考虑纤维混凝土的力学性能与纤维的掺量、纤维取向、长径比和纤维与基体粘结力之间的关系。

(2)纤维间距机理。该机理是由美国学者J.P.Romualdi提出,它根据断裂力学说明纤维对于混凝土裂缝的约束作用,该理论认为混凝土内部的缺陷是天生的,要想提高这种材料的抗拉强度,必尽量减少混凝土内部的缺陷,提高混凝土的韧性,降低内部裂缝尖端的应力场强度因子。

纤维分布和取向对混凝土性能的影响也是很重要的。若能使纤维分布在受拉区并按受拉方向定向排列,则增强效果将大大加强。目前在增强理论取得进展的同时,大量生产钢纤维的工艺问题也解决了,使得钢纤维混凝土源源不断应用于工程建设之中。

参考文献:

1焦楚杰, 孙伟, 高培正, 蒋金洋. 钢纤维高强混凝土力学性能研究. 混凝土与水泥制品, 2005,(3)

2 邓宗才, 彭书成. 哑铃型钢纤维粉煤灰混凝土基本力学性能及抗弯韧性. 公路. 2003, 9

3 秦鸿根, 刘斯凤, 孙伟等. 钢纤维掺量和类型对混凝土性能的影响. 建筑材料学报. 2003, 6

钢纤维混凝土范文第8篇

关键词:钢纤维;劈拉强度;抗折强度;抗压强度

1 试验材料及试验方案

1.1 试验材料

本试验所用水泥采用强度等级为425的普通硅酸盐水泥,技术性能满足国家标准的相关要求;粗集料采用级配良好的碎石,表观密度2.991g/cm3,堆积密度1.53 g/cm3,颗粒级配为5~10mm、10~20mm连续级配;细集料为普通河砂,最大粒径5mm,连续级配,细度模数2.83;本试验用了两种钢纤维,一种是普通钢纤维,另一种为短细钢纤维,两种钢纤维均为江西赣州利发金属材料公司生产。本试验用了无引气功能的萘系高效减水剂,减水率为15%~18%。

1.2 试验方案

本试验参照《钢纤维混凝土试验方法》(CECS 13:89)进行,试验包括抗压强度、劈拉强度和抗折强度试验三部分。抗压强度和抗折强度采用500t静载试验机,抗折强度采用50t静载试验机,采用标准的三等分点加载。本试验按照普通道路混凝土配合比设计方法设计弯拉强度标准值为5.0MPa的基准混凝土。并以0.41和0.42两个水灰比来调整基准混凝土配合比,然后选择较优配合比作为基准配合比。最终确定的基准混凝土配合比见表1。

在确定基准配合比的基础上,分别以钢纤维体积率为0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%进行钢纤维混凝土试验,以此考察钢纤维对混凝土的各种强度性能的影响。并且采用普通钢纤维和微细钢纤维按1:1比例组合,以充分发挥混杂效应,提高钢纤维混凝土的强度和韧性。以此综合考察钢纤维混凝土强度变化规律。

抗压强度试验采用100mm×100mm×100mm的试件,测定其无约束受力状态下的抗压强度。劈拉强度试验采用100mm×100mm×100mm的试件。加荷速度为0.05~0.08MPa/s。按式(1-1)计算劈拉强度。

FT为三分点加载模式下试件破坏荷载。

2 钢纤维混凝土强度试验结果分析

从图1可以看出,在钢纤维掺量为0.6%~1.2%时,其抗压强度随钢纤维掺量增加呈现出明显的规律性变化,7组试件的平均抗压强度增幅为6.6%。其中在掺量为0.8%时出现一个明显的峰值,其增幅为25.8%,从整体趋势看,当钢纤维掺量小于0.8%时,强度随掺量增加而增大;当钢纤维掺量大于0.8%时,强度随掺量增加而减小。并且可以看出钢纤维掺量为0.8%时,其强度在各个龄期内都最高,说明钢纤维对混凝土抗压强度的影响存在一个最佳掺量。在本次试验范围内,对钢纤维混凝土抗压强度来讲,存在一个最佳掺量0.8%。掺量大于或小于这个最佳掺量时都会造成增强效果不明显。 由图2-1(b)可知,多数组试件3d强度增强作用不明显,不过掺量为0.8时却有明显增强作用。

钢纤维对混凝土的增强作用主要体现在抗压强度上,许多研究都说明了这一点。本文的试验结果也表明,掺入钢纤维后,混凝土的抗压强度有较大地增长。其中,混杂钢纤维混凝土的劈裂抗拉强度增长尤其明显,基本上都较基体混凝土劈拉强度增长了1倍以上,较单一钢纤维混凝土有更好的增强效果。

从图2可以看出,钢纤维混凝土28d劈拉强度随着钢纤维体积掺量的增加而增大,并且都高于基准混凝土。其增幅普遍较大,其中体积率为1.2%时达到最高增幅27%,0.6%体积率的增幅最小,为10.1%。七组试件的平均增幅为17.5%,而对抗压强度的平均增幅只有6.6%。这说明钢纤维对混凝土劈拉强度的增强效果要比对抗压强度的增强效果显著许多。另外,如图2所示,从3d强度看,其增强作用就不明显了,其中有四组强度明显低于基准强度,有一组强度基本与基准强度持平,只有两组强度较基准有明显增强。说明钢纤维的加入并不能有效提高混凝土早期劈拉强度。

钢纤维体积掺量为0.6%~1.2%时抗折强度较基准混凝土增长了7.1%~19.8%,其中,掺量为0.9%对应的抗折强度较基准强度增幅最大,达到19.8%,所有试件的平均增幅为10.7%。钢纤维掺量在0.6%~0.9%范围时,抗折强度随掺量增加而提高,随后却有降低趋势,其中最高掺量1.2%对应最低增幅7.1%。因此可以认为在本次试验条件下,对抗折强度的最佳掺量为0.9%。另外还可以发现抗折强度的平均增长幅度达到要比抗压强度的平均增幅大又比劈拉强度的增幅小。并且其体积率对抗折强度的影响趋势跟抗压强度的很相似,都是在掺量在0.6%~1.2%之间存在一个最佳掺量,超过这个最佳掺量,强度随着体积率的增加而减小。从而可以得出结论,就钢纤维的影响效果而言,对劈拉强度的影响最大,对抗折强度的影响次之,对抗压强度的影响最小。此结论符合已知的结论。

4 结论

通过综合分析得出如下结论:(1) 单掺钢纤维对混凝土强度有增强作用。当掺量为0.8%时,可以使抗压强度达到最佳效果,较基准强度提高了25.8%;当掺量为0.9%时,使抗折强度达到最高,较基准强度增长了19.8%;掺量为1.2%时对劈拉强度达到最佳增强效果,较基准强度提高了27%。

参考文献

[1]赵国藩,彭少明,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999:1-50.

[2]徐至均. 纤维混凝土技术及应用[M]. 北京:中国建筑工业出版社,2002: 3-150.

[3]关宇.钢纤维混凝土的组成、特点及应用[J].当代建设,2003,(6).

钢纤维混凝土范文第9篇

关键词:钢纤维;混凝土;抗冻性能;冻融循环

中图分类号:TU528.572

文献标志码:A

文章编号:1674-4764(2012)04-0080-05

Experimental Analysis on the Frost Resistance of Steel Fiber Reinforced Concrete

NIU Ditao, JIANG Lei, BAI Min

(School of Civil Engineering, Xian University of Architecture and Technology, Xian 710055, P.R. China)

Abstract:The frost resistance of steel-fiber reinforced concrete (SFRC) was studied based on the fast freeze-thaw tests in water and in a 3.5% sodium chloride solution, with different mass fraction of steel fiber in concrete at 0%, 0.5%, 1.0%, 1.5% and 2.0%, respectively. The effects of the number of freeze-thaw cycles and the volume fraction of steel fiber on the mass lose rate, the splitting strength loss rate and the dynamic modulus of elasticity of SFRC were analyzed. The reinforcement mechanism of the steel fiber under the action of freeze and thaw was also discussed. Moreover, mercury intrusion method and SEM analysis were carried out to study the pore size distribution features and the performance of microstructure on the impact of frost resistance of SFRC. The results show that adding an appropriate amount of steel fiber into concrete can reduce the pore porosity and improve the compactness of concrete. Furthermore, the presence of steel fiber proves to shrink the porosity and improve evidently the frost resistance of concrete. It is also shown that the steel fiber content has a great influence on the frost-resisting property of SFRC. The best performance of SFRC can be achieved when the volume fraction of steel fiber is 1.5%.

Key words:steel fiber; concrete; frost resistance; freeze-thaw cycle



钢纤维混凝土是近年来发展起来的一种性能优良的复合材料。随着钢纤维混凝土在工程中的广泛应用,其耐久性问题将会是十分重要而迫切需要解决的问题。许多学者对钢纤维混凝土做了大量试验研究,然而多集中于力学性能方面[1-4],钢纤维对混凝土耐久性影响则研究较少。对于寒冷地区的建筑物而言,冻融作用是导致其结构性能损伤的主要原因[5-7]。冻融循环加剧了混凝土内部初始裂纹扩展并且诱发新裂纹出现和发展,这是混凝土冻融劣化破坏的本质。但是,钢纤维的掺入有效限制了混凝土内部裂纹的形成与扩展,提高了混凝土的抗裂能力。因此,冻害地区钢纤维混凝土耐久性能引起了众多学者的广泛关注。谢晓鹏等[8]和康晶[9]研究表明,钢纤维的掺入延缓了混凝土内部裂纹的形成与扩展,增强了混凝土基体的抗冻性能。Yang等[10]认为钢纤维的掺入降低了混凝土的抗盐冻剥蚀性能,特别是引气混凝土的抗盐冻剥蚀性能。目前,钢纤维混凝土抗冻性能研究的重点主要集中在宏观层面,较少从微观层面对其性能退化规律进行研究,且对盐溶液环境下钢纤维混凝土抗冻性能研究也较少。

钢纤维混凝土范文第10篇

钢纤维混凝土配合比设计的目的是将组成材料,即钢纤维、水泥、水、粗细集料及外掺剂合理配合,使配制的钢纤维混凝土能够最大限度的满足施工和工程使用要求。

(1)满足公路桥梁抗压强度和抗折强度要求,提高桥面的耐久性能;

(2)使配制的钢纤维混凝土有较好的和易性,方便和满足施工要求;

(3)充分发挥钢纤维混凝土的特点,合理确定钢纤维及水泥用量,最大限度地降低工程成本。

二、原材料质量要求

钢纤维:表面应洁净无锈无油,无粘结成团现象,保证钢纤维与混凝土的粘结强度,尺寸和抗拉强度符合技术要求;单根钢纤维丝的最低抗拉强度800N/㎜2,掺加量不超过70㎏/M3。

水泥:采用32.5级或42.5级普通硅酸盐水泥。

碎石:应采用石质坚硬、清洁、不含风化颗粒、表面粗糙,近立方体颗粒的碎石。

细集料:宜采用天然中粗砂或机制砂。细集料的洁净程度,天然砂以小于0.075㎜含量的百分比表示,机制砂以砂当量或亚甲蓝值表示,其质量必须满足规范的要求。

水:无污染的自然水或自来水。

外加剂:宜选用优质减水剂,对抗冻性有明确要求的钢纤维混凝土宜选用引气型减水剂。

三、钢纤维混凝土配合比设计步骤

钢纤维混凝土配合比设计与普通混凝土配合比设计一样,一般采用计算法。可按下列步骤进行:

(1)根据强度标准值或设计值及施工配置强度提高系数确定试配抗压强度和抗折强度。

(2)按试配抗压强度计算水灰比,一般应控制在0.45-0.50之间。可按普通水泥混凝土抗压强度、水泥标号、水灰比的关系式求得。

(3)根据试验抗折强度,按规定计算钢纤维体积率。一般体积率选1.0~1.5%。

(4)根据施工要求通过试验确定单位体积用水量(掺用外加剂时应考虑外加剂的影响)。

(5)根据试验确定合理砂率(现场应根据材料品种,钢纤维纤维体积率,水灰比等适当调整),一般应控制在1.1-1.6%之间.

(6)按体积法计算材料用量确定试验配合比。

(7)按配合比进行拌和物性能检测,调整确定施工配合比。

四、钢纤维混凝土的拌和

(1)必须使用滚动式混凝土拌和设备。当钢纤维体积率较高,拌和物稠度较大时,应对拌和量进行控制,一般应不超过设备拌和量的60%。

(2)注意拌和料的投放顺序,一般按水泥、钢纤维、细集料、粗集料、水的顺序进行,先进行干拌后再加水湿拌,同时,钢纤维应分2-3次投放,保证钢纤维在拌和机内不结团,不弯曲或拆断。

(3)应根据拌和物的粘聚性、均匀性及强度稳定性要求通过试拌确定合理的拌和时间。先干拌后湿拌,一般按干拌时间不少于80秒,湿拌时间不少于100秒(总拌和时间必须控制在300秒以内)。

五、钢纤维混凝土的施工与养护

(1)清除垃圾,清洁桥面,洒水湿润,浇洒水泥浆(水泥浆可按重量比水:水泥=1∶1配制)。

(2)检查桥面铺装钢筋网片摆放位置的正确性及钢筋网片的搭接情况。

(3)钢纤维混凝土卸料后应用人工摊铺找平,振捣密实,振平板粗平(不宜使用振动梁拉动找平),振平板每次重叠1/2。

(4)用钢管提浆滚滚动碾压数遍,使用提浆滚滚平提浆,避免钢纤维外露。

(5)使用3米长铝合金方尺从钢模板一侧向外刮平(精平),每次刮平时方尺应交叉1/3以上。

(6)钢纤维初凝后人工拉毛处理,使桥面粗糙。

(7)混凝土完成初期可喷洒养生剂,喷洒均匀,表面无色差,初凝后使用土工布覆盖洒水养生,保持土工布湿润。土工布覆盖养生7天,洒水养生14天。

(8)如果桥面铺装钢纤维混凝土为C60时,因混凝土标号较高,水泥凝固快,应集中设备、人员突击施工,力争使钢纤维混凝土从拌和到精平完成的时间控制在4小时以内。

六、钢纤维混凝土质量控制

(1)钢纤维的质量检验

一是钢纤维的长度偏差不应超过标准长度的10%,每批次至少随机抽查10根以上;

二是钢纤维的直径或等效直径合格率不得低于90%,可采取重量法检验,每批次抽检100根,用天平称量,卡尺测其长度,要求得到的等效平均值满足规定;

三是钢纤维的抗拉强度检验,要求其抗拉强度不低于380MPA;

四是钢纤维的抗弯拆性能,钢纤维应能经受直径3㎜钢棒弯拆90°不断,每批次检验不少于10根;

五是杂质含量,钢纤维表面不得有油污,不得镀有有害物质或影响钢纤维与混凝土粘接的杂质。

(2)原材料的检验

必须满足上述原材料的质量控制标准,应按照公路工程施工技术规范的要求进行检验。

(3)钢纤维混凝土的检验

应重点检验钢纤维混凝土的和易性、塌落度和水灰比等,同时必须现场目检钢纤维在混凝土的分布情况,发现有钢纤维结团现象应延长拌和时间。

七、注意事项

(1)由于钢纤维混凝土拌和时对水灰比的控制有严格要求,不宜在阴雨天气或风力较大的条件下进行施工。应选择晴好天气时进行,遇雨必须停止施工,并及时使用土工布覆盖尚未硬化的混凝土桥面,必要时可搭建临时施工防雨棚,在防雨棚下尽快完成剩余作业。

(2)根据气温、风力大小及时调整钢纤维混凝土拌和用水量,保证混凝土的和易性,建议施工时间应安排在气温不高于22℃时进行。

(3)气温较高或大风条件下应及时调整养生剂的喷洒量,喷洒养生剂后应及时覆盖土工布,混凝土初凝后立即在土工布上洒水湿润,防止桥面混凝土发生收缩开裂。

(4)在通行条件下桥梁加宽使用钢纤维混凝土桥面铺装时,除做好现场施工保通外,由于旧桥车辆通行振动对桥面钢纤维混凝土的开裂有很影响,建议将新旧桥桥面间保留30㎝宽暂时不做铺装,待新格面铺装完全成型后补做。

八、结束语

钢纤维混凝土可以较好地解决普通混凝土难以解决的裂缝、耐久性等问题,对提高桥面的使用质量,延长桥面的使用寿命十分有利。在公路旧桥加固改造、桥面修补、桥梁缺陷修复等方面的应用会更加广泛。

[摘要]钢纤维混凝土克服了普通混凝土抗拉强度低、极限延伸率小、脆性等缺点,具有优良的抗拉、抗弯、抗剪、阻裂、耐疲劳、高韧性等性能,通过在桥面铺装中的应用,总结了钢纤维混凝土施工方法,技术要求及有关注意事项,为钢纤维混凝土的推广应用提供了经验。

[关健词]钢纤维配合比设计质量控制

参考文献:

[1]钢纤维混凝土结构与施工规程.中国工程建筑标准化协会标准.

[2]张中海.钢纤维混凝土及其质量检验.

上一篇:彩色混凝土范文 下一篇:混凝土防冻剂范文