数字集成电路设计理论研究

时间:2022-10-26 10:02:56

数字集成电路设计理论研究

摘 要:数字集成电路是集成电路的重要组成部分,其在实践中有着极为广泛的使用,有力地推动了信息化产业的快速发展。在这种背景下,本文基于对数字集成电路相关理论概述的基础上,综合分析了数字集成电路的设计以及数字集成电路的核心工艺。

关键词:数字集成电路;设计;核心工艺

随着微电子技术的发展,数字集成电路获得了越来越广泛的应用。深入了解数字集成电路特性,正确分析数字集成电路在实验中出现的种种异常现象,对于提高数字电子技术使用效果、加深使用者对数字电路理论的理解有着十分重要的作用。而实现上述目的的最关键部分在于对数字集成电路的设计相关内容有着较为清晰的理解,本文正是在这种背景下,探讨了数字集成电路的不同设计方法以及所采用的核心工艺,以求为理论界与实践界更好的认识数字集成电路提供必要的借鉴与参考。

一、数字集成电路理论概述

数的表达是多种多样的,如二进位、八进制、十进位、十六进位等。电脑中数字处理是二进位,所以一切资料都要先转化为“0”和“1”的组合。在教学中要对学生强调这里的“0”和“1”不是传统数学中的数字,而是两种对立的状态的表达。数字集成电路是传输“0”和“1”(开和关)两种状态的门电路,可把来自一个输入端的信息分配给几个输出端,或把几个输入端传来的信息加以处理再传送出去,这个过程叫做逻辑运算处理,所以又叫逻辑集成电路。在数字集成电路中电晶体大多是工作在特性曲线的饱和状态和截止状态(逻辑的“0”和“1”)。数字集成电路又包括着如下三种电路:门电路,是作为不包含时间顺序的组合电路;触发器电路,其能存储任意的时间和信息,故在构成包含时间关系的顺序电路时必不可少,这种电路叫做时序逻辑电路,例如寄存器、管理器等。触发器电路是基本时序单元电路;半导体记忆体电路,它可以存取二进位数字字信息,记忆体的作用是用来记住电子电脑运算过程中所需要的一切原始资料、运算的指令程式以及中间的结果,根据机器运算的需要还能快速地提供出所需的资料和资料。在上课时,发现学生易将组合逻辑电路、时序逻辑电路混淆,所以教学中要反复强调两者的的特点,进行对比,使学生能正确区分两种电路。

二、数字集成电路的设计

第一,MOS场效应电晶体的设计。常用的是N沟MOS管,它是由两个相距很近、浓度很高的N十P结引线后做成的,分别叫做源极“S”和漏极“D”。在源极“S”和漏极“D”之间的矽片表面生长一薄层二氧化矽(SiO2),在SiO2上复盖生长一层金属铝叫栅极“G”(实际上“G”极是个MOS二极体)。NMOS集成电路是用得很多的一个品种。要注意一点是多晶矽栅代替了铝栅,可以达到自对淮(近乎垂直)掺杂,在栅下面的源、漏掺杂区具有极小横向的掺杂效应,使源、栅漏交迭电容最小,可以提高电路的速度。

第二,CMOS集成电路互补场效应电晶体的设计。CMO是指在同一矽片上使用了P沟道和N沟道两种MOS电路。这种反相器有其独特之处,不论在哪种逻辑状态,在VDD和地之间串联的两个管子中,总有一个处干非导通状态,所以稳态时的漏电流很小。只在开关过程中两个管子都处于导通状态时,才有显着的电流流过这个反相器电路。因此,平均功耗很小,在毫微瓦数量级,这种电路叫做CMOS电路。含有CMOS电路的集成电路就叫做CMOS集成电路,它是VLSI设计中广泛使用的基本单元。它占地面积很小、功耗又小,正是符合大规模集成电路的要求,因为当晶片的元件数增加时功耗成为主要的限制因素。CMOS集成电路成为低功耗、大规模中的一颗明星,它是VLSI设计中广泛使用的基本单元,但它的设计和工艺难度也相应地提高了许多。CMOS集成电路在P型衬底上先形式一个以待形成PMOS管用的N型区域叫做“N井”,在“N井”内制造PMOSFET的过程与前述的NMOS管相同,所以制造CMOS集成电路的工序基本上是制造NMOS集成电路的两倍。另外还要解决麻烦的门锁效应(Latch-up)。但它仍是高位数、高集成度、低功耗微处理器等晶片的首选方案。

第三,二极体的设计。集成电路中的二极体均由三极管的eb结或cb结构成,前者的正向压降低,几乎没有寄生效应,开关时间短;后者常在需要高击穿电压的场合中使用,技术上又不必单独制做,只是在晶体管制成后布线时按电路功能要求短路某二个电极,从留用的P-N二边引线出去和电路连接。课堂教学中,对二、三极管的特性及工作原理要做详细的复习,以便学生理解。

第四,电阻设计。集成电路中的电阻是在制造电晶体基区层的同时,向外延层中进行扩散制成。阻值取决于杂质浓度、基区的宽度和长度及扩散深度。当需要更大电容阻值时,采用沟道电阻;在需要更小电容阻值时,则采用发射区扩散时形成的N十区电阻。

这里电阻与学生之前学习的电阻进行比较,利于学生理解。

第五,电容设计。集成电路中的电容器有两种,一种是P-N结电容,它是利用三极管eb结在反向偏压下的结电容,电容量不是常数,它的大小与所加偏压有关,且有极性;另一种是MOS电容,电容值是固定,与偏压无关。一般用重掺的区域作为一个板极,中间的氧化物层作为介质层,氧化物层的顶层金属作为另一个板极。但是,集成电路设计中应尽量避免使用电容,数字电路一般都采用没有电容的电路。

三、数字集成电路的核心工艺

首先是薄圆晶片的制备技术。分别在半导体专用切片机、磨片机、拋光机上加工出厚度约为400um、表面光亮如镜、没有伤痕、没有缺陷的晶片。

其次是外延工艺技术。为了提高电晶体集电结的击穿电压,要求高电阻率材料。但为了提高电晶体工作速度,要求低电阻率材料,为此在低阻的衬底材料上外延生长一层高阻的单晶层,这叫做外延技术。

第三是隔离工艺技术。因为数字集成电路中各组件是做在同一半导体衬底片,各组件所处的电位也不同,要使做有源元件的小区域(电晶体)彼此相隔离开,这种实现彼此隔离的技术叫做隔离技术。正是由于它的出现,使分立元件发展到数字集成电路成为可能。现在常用的有介质隔离(将SiO2生长在需要隔离的部位)和P-N 结隔离两种方法。P-N结隔离是在隔离部位形成两个背对背的P-N结;外延结构P-N结隔离是在P 型衬底表面的n型外延层上进行氧化、光刻、扩散等工艺,并将硼杂质扩散到特定部分,直到扩穿外延层和P 型衬底相接。外加反向电压使外延n型层成为一个个相互隔离的小岛,然后再在这个n型外延小岛区域上分别制造电晶体或其他元件。

最后是氧化工艺技术。半导体器件性能与半导体表面有很大关系,所以必须对器件表面采用有效保护措施。二氧化矽被选作为保护钝化层,一来它易于选择腐蚀掉;二来可以在扩散之后在同炉内马上通氧进行氧化;三来可以作为选择掺杂的掩蔽物;再来它常被用来作导电层之间的绝缘层。当然用作钝化的介质还有氮化矽薄膜,这里不多介绍。各种薄膜不仅要执行其本身的预定功能,也要和后续的全部工艺相相容。即钝化薄膜要能承受所要求的化学处理及加热处理,而其结构还保持稳定。从上面工艺流程可以看到,每一步光刻之前都有氧化工序,图形加工只能在氧化层上进行。

设计是一项难度较大的工作,在设计中要考虑许多细节的东西,实践与理论之间有一定的差距,对于我们技术学校的学生而言,可以让他们做一些简单的设计,自己动手搭建电路并做测试,在做中发现问题,解决问题,从而加深对知识的理解。

(作者单位:福建省第二高级技工学校)

参考文献:

[1]桑红石,张志,袁雅婧,陈鹏.数字集成电路物理设计阶段的低功耗技术[J].微电子学与计算机,2011年第4期.

[2]黎声华,邹雪城,莫迟.静态时序分析在数字集成电路设计中的应用[J].2003年第8期.

[3]孙玲,陈海进.基于CMOS工艺的中小规模数字集成电路设计浅析[J].南通工学院学报(自然科学版),2004年第1期.

上一篇:“鸿博杯”创业计划大赛助草根圆创业梦想等 下一篇:冬天的仪式