用UWB信号仿真分析室内MIMO信道

时间:2022-10-19 02:36:16

用UWB信号仿真分析室内MIMO信道

摘 要:用UWB信号仿真MIMO室内信道,首先对UWB进行了简单的分析,选取适合的信号(高斯二阶脉冲)作为发送信号,然后以确定性的射线追踪算法为基础,对频带进行分割,并推导了接收波形的公式,最后对接收信号进行估计。

关键词:MIMO 超宽带 射线跟踪 信道

中图分类号:TN2文献标识码:A 文章编号:1007-3973 (2010) 01-099-01

1序论

超宽带技术(UWB)是由一系列周期非常短、频率非常高的脉冲波实现的一种通信方式,通常也被称为脉冲通信技术。当信号频率与中心频率的比值大于等于25%,或者带宽大于等于500Mbps,则为超宽带。

将MIMO技术用于UWB系统具有很高的链路可靠性和速率适配能力, MIMO-UWB系统能够在时域上很好地解决有害的码间干扰和信道间干扰问题,原因在于接收信号具有良好的自相关及互相关特性。同时又有很多关键技术可以运用,见文献[1]。

2UWB信号选取

在本文中,我们选取高斯二阶信号作为发送信号,根据文献[2]可知,从相干带宽的数据来分析,高斯信号族相干带宽较大。当传输信号带宽大于信道带宽时,信号经过信道将会产生频率选择性衰落,这种衰落将会造成传输信号的码间干扰。而高斯信号所产生的码间干扰较小。高斯二阶信号又优于其它阶的高斯信号。由此,可以得出高斯二阶信号建立的室内信道模型较其它信号建立的模型更准确。波形表达式为:

(2.1)

其中:――脉冲幅度,取值为1;――为脉冲成型因子,取值为;――为脉冲持续时间,1/中心频率;进行归一化处理后可得到时域的高斯二阶波形见图1:

图1时域的高斯二阶脉冲波形

3用高斯信号仿真分析室内MIMO信道

3.1计算过程

根据射线追踪法的详细计算过程,我们可以求得信道的H矩阵中任意hij,可将其转化为时域形式公式(3.1),接收波形的时域表达形式为式(3.2)

(3.1)

(3.2)

其中:为每一射线到达接收点的功率值,为相位变化,为发送信号的载波频率,为每一射的时延,为有效射线数。为高斯二阶信号,由求得。

我们将式(2.1)及式(3.1)带入式(3.2)可化简得到一对发送接收天线的接收波形表达式为式(3.3),总的接收波形为公式(3.4),N,M分别为发送接收天线数。

(3.3)

(3.4)

3.2仿真图形

仿真环境: 2天线,发送天线(半波偶极子)坐标[1,1,1],[1.2,1,1];接收天线[6,7.5,0.8],[6.2,7.6,0.8],发射频率2.35GHz~2.85GHz。以1MHz为间隔,取500个点,房间尺寸8, LOS环境。

我们把大的带宽分为N个小的带宽,在每个带宽内取中心频点进行计算,则分割之后的子信道,可视为平坦的,慢衰落信道,则可以由前文提到的频域的射线追踪算法进行计算,计算完每个子信道之后再进行叠加处理。得到的仿真图为:

图2天线的接收波形

3.3结果分析

图2为两个接收天线接收到的波形图,从图中可以看出接收端的第一条到达路径幅度最大,原因是第一条到达路径是直达路径,没有传播损耗和反射损耗。由于是MIMO信道,则两个发送天线到达同一根接收天线的时延不一样,则两个直达路径的时延不一样,峰值则是由接收功率决定的。把图中的部分波形进行放大可以发现在有的位置出现了波形的混迭,原因为反射次数多,到达接收天线的几条路径时延很接近,时域波形进行了叠加,而由于多径效应造成了时延展宽,引入码间干扰。

4结论

本文以确定性的射线追踪算法为基础,通过理论分析选取高斯二阶脉冲信号作为实验波形,在室内MIMO情况下,进行频带分割,推导接收波形的公式,通过公式仿真MIMO-UWB信道的接收波形,并分析波形出现混迭是由于多径效应造成了时延展宽,引入码间干扰。

参考文献:

[1]杜洪峰,周正.基于自适应调制技术的MIMO-UWB无线通信系统的研究[J].电子与信息学报,vol.28, No.6, 2006.

[2]王慧民.用时域射线跟踪法研究UWB室内信道模型[D].硕 士学位论文,2009,pp.45-46.

[3]吕剑刚.多入多出无线通信技术研究[D].北京邮电大学博 士研究生学位论文,2006PP.24-30.

上一篇:砂土液化研究综述 下一篇:利用MP算法去除地震资料中的随机噪声