独家原创:论PLC控制系统抗干扰技术

时间:2022-10-19 04:45:06

独家原创:论PLC控制系统抗干扰技术

摘要:随着工业设备自动化控制技术的发展,可编程控制器(PLC)在工业设备控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。本文详细介绍擞跋PLC运行的干扰类型及来源,并提出抗干扰设计的实施策略。

关键词:PIC;抗干扰;输入输出;电路设计

引言

PLC由于具有功能强、程序设计简介,维护方便等优点,特别是高可靠性、较强的适应恶劣工业环境的能力,已被广泛应用于自来水行业。但由于现场环境条件恶劣、湿度高、以及各种工业电磁、辐射干扰等,会影响系统的正常工作,因此必须重视工程的抗干扰设计。一、影响PLC控制系统可靠性的主要因素

PLC控制系统的可靠性通常用平均故障间隔时间(MeanTimeBetweenFailure,简称WIBF)来衡量。它表示系统从发生故障进行修理到下一次发生故障的时间间隔的平均值。PLC装置本身是非常可靠的,而PLC控制系统的干扰主要是外部环节和硬件配置不当引起的。一是电源侧的工频干扰,它由电源进入PLC装置,造成系统工作不正常;二是线路传输中的静电或磁场耦合干扰,以及周围高频电源的辐射干扰,静电耦合是通过信号线与电源线之间的寄生电容,磁场耦合发生在长布线中线间的寄生互感上,高频辐射是通过高频交变磁场与信号间的寄生电容;三是PLC控制系统的接地系统不当引起的干扰。因此,在实际设计中往往从以下几个方面考虑:(1)对程序和数据的保护;(2)对工业生产环境的适应性;(3)故障安全原则,系统间独立性原则与冗余及容错结构;(4)运行时的实时性和连续性。

二、干扰的主要来源

(一)来自空间的辐射干扰

空间辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若PLC系统置于其射频场内,就会受到辐射干扰,其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护

(二)来自系统外引线的干扰

主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较为严重,主要有下面三类:

第一类是来自电源的干扰。实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后更换隔离性能更高的PLC电源问题才得到解决。

第二类是来自信号线引入的干扰。与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这种往往非常严重。

第三类是来自接地系统混乱的干扰。接地是提高电子设备电磁兼容性(EMC)的有效手段之一,正确的接地既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地反而会引入严重的干扰信号,使PLC系统无法正常工作。PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等,接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层。当发生异常状态如雷击时,地线电流将更大。

(三)来自PLC系统内部的干扰

主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射、模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂家对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门无法改变,可不必过多考虑,但要选择具有较多应用实绩或经过考验的系统。

三、干扰的主要措施

(一)电源系统引入的干扰

电网的干扰,频率的波动,将直接影响到PLC系统的可靠性与稳定性。如何抑制电源系统的干扰是提高PLC的抗干扰性能的主要环节

1、加装滤波、隔离、屏蔽、开关稳压电源系统。

设置滤波器的作用是为了抑制干扰信号从电源线传导到系统中,使用隔离变压器,必须注意:屏蔽层要良好接地;次级连接线要使用双绕线(减少电线间的干扰),隔离变压器的初级绕组和次级绕组应分别加屏蔽层,初级的屏蔽层接交流电网的零线;次级的屏蔽层和初级间屏蔽层接直流端。

为了抑制电网大容量设备起停(如送水泵等)引起电网电压的波动,保持供电电压的稳压,可采用开头稳压电源。

2、分离供电系统

PLC的控制器与I/O系统分别由各自的隔离变压器供电,并与主电源分开,这样当输入输出供电断电时,不会影响到控制器的供电。如下图所示。

(二)抑制接地系统引入的干扰

PLC系统分为逻辑电路接地和功率电路接地,有共地、浮地及机壳共地和电路浮地等三种方式。一般采用控制器与其它设备分别接地方式最好,接地时注意:接地线尽量粗,一般大于2mm2的线接地;接地点应尽量靠近控制器,接地点与控制器之间的距离不大于50m;接地线应尽量避开强电回路和主回路的电线,不能避开时,应垂直相交,应尽量缩短平行走线的长度。

实践证明,接地往往是抑制噪声和防止干扰的重要手段,良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。

(三)抑制输入输出电路引入的干扰

为了实现输入输出电路上的完全隔离,近年来在控制系统中光电耦合得到广泛应用,已成为防止干扰的最有效措施之一。光电耦合器具有以下特点:首先,由于是密封在一个管壳内,不会受到外界光的干扰;其次,由于靠光传送信号,切断了各部件电路之间地线的联系;第三,发光二极管动态电阻非常小,而干扰源的内阻一般很大,能够传送到光电耦合器输入输出的干扰信号就变得很小;第四,光电耦合器的传输比和晶体管的放大倍数相比,一般很小,远不如晶体管对干扰信号那么灵敏,而光电耦合器的发光二极管只有在通过一定的电流时才能发光。因此,即使是在干扰电压幅值较高的情况下,由于没有足够的能量,仍不能使发光二极管发光,从而可以有效地抑制掉干扰信号。由于光电耦合器的线性区一般只能在某一特定的范围内,因此,应保证被传信号的变化范围始终在线性区内。为了保证线性耦合,既要严格挑选光电耦合器,又要采取相应的非线性较正措施,否则将产生较大的误差。

1、光电耦合输入电路下图所示

其中图(a)、图(b)用的较多,高电平时接成形式,低电平输入时接成形式。图(c)为差动型接法,它具有两个约束条件,对于防止干扰有明显的优越性,适用于外部干扰严重的环境,当外部设备电流较大时,其传输距离可达100~200m,图(d)考虑到COMS电路的输出驱动电流较小,不能直接带动发光二极管,所以加接一级晶体管作为功率放大,需要注意的是图中发光二极管和光敏三极管应分别由两个电源供电,电阻值视电压高低选取。

光电耦合输入电路

2、光电耦合输出电路下图所示。为了得到和输入同相的信号,可以采用图(a)形式。若要求输出和输入反相,可以接成图(b)形式。当输出电路所驱动的元件较多时,可以加接一级晶体管作为驱动功率放大,其接法如图(c)所示。有时为了获得更好的输出波形,输出信号可经施密特电路整形。

光电耦合输出电路

(四)输入信号的抗干扰

输入设备的输入信号的线间干扰(差模干扰)用输入模块的滤波器可以使其衰减,然而,输入信号线与地问的共模十扰在控制器内部回路产生的电位差仍会引起控制器误动作。因此,为了抗共模F扰,控制器要良好接地。当输入信号源为感性元件,输出负载的负载特性为感性元件时,为了防止反冲感应电势或浪涌电流损坏模块,对于交流输入信号在负载俩端并联电容C和电阻R,对于直流输入信号并联续流二极管VD,如下图所示。在图(a)中R、C参数一般选择为120Ω+0.1μF(当负荷容量<10V•A时)或47Ω+0.471μF(当负荷容量>10V•A时)。在图(b)中,二极管的额定电流选为1A,额定电压要大于电源电压的3倍。对于感应电压的干扰,采用输入电压直流化或输入端并接浪涌吸收器的方法抑制。

(五)输出信号的抗干扰设计

交流感性负载场合下,在负载两端并接浪涌吸收器;直流负载场合下,在负载两端并接续流二极管VD,以抑制输出信号的干扰,如图所示。在下图(a)中,RC越靠近负载,抗干扰效果越好。当PLC的输出驱动的负载为电磁阀这类元件时,可在输出端和电磁阀之间加固态继电器(SSR)进行隔离。另外,从抗干扰的角度出发,适当选择I/0模块也是很重要的。在干扰多的场合,可选用绝缘型的I/O模块和装有浪涌吸收器的模块,可以有效地抑制输入输出信号地干扰。

(6)输入输出信号漏电流处理

当输入信号源为晶体管,或是光电开关输出类型时,当输出元件为双向,或是晶体管输出而外部负载又很小时会因为这类输出元件在关断时有较大地漏电流,使输入电路和外部负载电路不能关断,导致输入与输出信号地错误。为此,在这类输入、输出端要并联旁路电阻,以减小PLC输入电流和外部负载上的电流,如下图所示。

图中旁路电阻可按以下方式计算:

R式中:Um为输入信号源或外部负载电压的最大值;

l1为输入信号源或输出晶闸管最大漏电流;

ln为输入点或外部负载的额定电流。

(七)输入输出信号的防错

当输入信号源为晶体管,或是光电开关输出类型时,在关断时仍有较大的漏电流。而PLC的输入继电器灵敏度较高,如漏电流干扰超过一定值,就形成了误信号。同样,当输出元件为VTH(双向晶闸管)或是晶体管输出,而外部负载又很小时,会因为这类输出元件在关断时有较大的漏电流,引起微小电流负载的误动,导致输入与输出信号的错误,给设备和人身造成不良后果。解决办法是在这类输入、输出端并联旁路电阻,以减小PLC输入电流和外部负载上的电流,电路接线下图所示。图中,旁路电阻按下式求出:

Um

R<

Il﹣0.5IN

式中,Il——输入信号源或输出晶闸管最大漏电流;

Um——输入信号电压或外部负载电压最大值

IN——输入点或外部负载的额定电流。

还有一种方法是在PLC输入端加RC滤波环节,利用RC的延迟作用来抑制窜入脉冲所引起的干扰。在晶闸管输出的负载两端并联RC浪涌电流抑制器,减小漏电流的干扰。

四、结论

PLC控制系统的干扰是一个十分复杂的问题,随着PLC在电厂的应用越来越广泛,它所要克服的干扰越来越多,越来越复杂。因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制干扰,对有些干扰情况还需做具体分析,采取对症下药的方法,才能够使PLC控制系统正常工作,保证工业设备安全高效运行。

参考文献

[1]李斌.邹灿红-PLC控制系统抗干扰技术研究-《机电工程技术》-2008(04)

[2]魏先民-PIC控制系统应用的抗干扰问题研究-《微计算机信息》-2005(28)

[3]邹德增-PLC控制系统中的抗干扰分析及措施-《露天采矿技术》2005(21)

[4]徐治国,-浅谈PLC控制系统抗干扰问题-《科技信息(学术版)》2007(09)

上一篇:中药疗效因素分析论文 下一篇:药品召回制度障碍论文