基于UC3875的开关电源设计

时间:2022-10-15 07:23:00

基于UC3875的开关电源设计

[摘 要]开关电源是相对线性电源说的,他输入端直接将交流电整流变成直流电,再在高频震荡电路的作用下,用开关管控制电流的通断,形成高频脉冲电流。在电感(高频变压器)的帮助下,输出稳定的低压直流电。本文首先对高频开关电源的主电路进行了设计,采用PWM脉冲对开关电源进行控制。同时基于UC3875芯片,设计了基于UC3875作为控制核心的驱动电路。

[关键词]开关电源 ;PWM;UC3875;驱动电路

中图分类号:TM743 文献标识码:A 文章编号:1009-914X(2015)26-0257-01

0 引言

开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛应用于电子整机与设备中。开关型稳压电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。以功率晶体管(GTR)为例,当开关管饱和导通时,集电极和发射极两端的压降接近零;当开关管截止时,其集电极电流为零[1]。所以其功耗小,效率可高达70%-95%。而功耗小,散热器也随之减小。开关型稳压电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器。此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此开关电源具有重量轻、体积小等优点。

1 开关电源的类型

按驱动方式分类有:(1)自激式开关电源其借助于变换器自身的正反馈控制信号,实现开关自持周期性开关。开关管起着振荡器件和功率开关的作用[2]。(2)他激式开关电源其电源内部备有专门独立的振荡电路,与振荡器同步的控制信号驱动开关管[3]。

按能量转换过程的类型分类有:(1)直流~直流(DC~DC)。(2)逆变器(DC~AC)。(3)开关整流器(AC~DC)。(4)交流~交流变频器(AC~AC)。

2 开关电源设计

在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。

在设计制作的1.2kW(48V/25A)的软开关直流电源中,其主电路为全桥变换器结构,四只开关管均为MOSFET(1000V/24A),采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS,电路结构简图如图1。VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,以实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及L1、C3、C4等滤波器件组成。

图1 1.2KW软开关直流电源电路结构简图

其基本工作原理如下:当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。

由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。

当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。

关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。

VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2,由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3、Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预选设置好的死区时间延迟后开通VT4,由于变压器漏感及副边滤波电感的作用,原边电流不能突变,VT4即是零电流开通。

3 UC387构成的驱动电路设计

UC3875是美国Unitrode公司针对移相控制方案推出的PWM控制芯片,实用于全桥变换器中驱动四个开关管,四个输出均为图腾柱式结构,可以直接驱动MOSFET或经过驱动电路放大,驱动大功率MOSFET或IGBT。由于该期间设计巧妙,是一种应用前景较好的控制芯片。

本电源的主功率管选用的MOSFET,是电压型驱动方式,驱动功率要求比较小。采用脉冲变压器将功率管的驱动端和控制电路隔离。UC3875的驱动端具有2A的电流峰值,但为了提高电路的可靠性,防止UC3875因为功率太大而损坏,所以采用达林顿驱动的晶体管组成输出电路来驱动脉冲变压器的原边。超前桥臂的驱动电路如图2所示,之后桥臂的驱动电路也一样。

图中,D1、D2和D3、D4是肖特基二极管,用于防止驱动管的电压由于低于或高于电源电压而损坏。R21和R22是限流电阻,DW1、DW2和DW3、DW4是齐纳稳压管,用来限制脉冲变压器的输出电压,防止功率管损坏。T1和T3选中TIP122,T2、T4选用TIP127,T1?T4是达林顿驱动的晶体管,耐压为100V,持续电流为5A,峰值电流可达8A,其开启时间和关断时间分别为1.5μs和2.5μs,而开关电源的设计的频率为70KHZ,即14μs>1.5μs+2.5μs,满足设计要求。

图2 功率管驱动电路

除了输出电流限制外,本电源还设置有五个保护功能:输入过电压保护、输入过流保护、输出过压保护、输出过流保护、过热保护。五种保护都是通过一个或门UC3875的电流检测端C/S+(5脚),使其电压高于2.5V,导致UC3875关断输出。输入、输出电流分别取自串联在输入、输出回路中的分流器上的信号(0-75mV)。

4 结束语

本文介绍了由UC3875芯片作为控制电路的1.2KW移相控制全桥变换软开关电源,由于开关管在ZVS条件下运行,可实现高频化,而且控制简单,性能可靠,适用于大功率场合。且能保持恒频运行,就不会同时出现大电压、大电流,减少了开关所受的应力,实现了高效化。大大减小了电源的体积。

参考文献

[1] 曲学基.稳定电源基本原理与工艺设计[M].北京:电子工业出版社,2004.

[2] 李定宜.开关稳定电源设计与应用[M].中国电力出版社.2006.

[3] 杨恒.开关电源典型设计实例精选[M].中国电力出版社.2007.

作者简介

黄志勇(1933―),湖南郴州人,硕士,控制理论与控制工程专业。

上一篇:皖南煤田的形成原因 下一篇:提高环境监测质量管理改善环境监测