以右室起搏对心功能影响为例探讨META分析方法

时间:2022-10-08 08:33:30

以右室起搏对心功能影响为例探讨META分析方法

摘要:目的 该篇META分析比较右室非心尖部起搏(RVNAP)和心尖部起搏(RVAP)对心功能的影响。方法 检索MEDLINE、EMBASE和Cochrane Controlled Trials Register数据库,收集随访时间≥2个月的随机对照试验。结果 20个试验包括1114例患者入选。与RVAP相比,RVNAP不仅在起搏阈值及R波感知方面表现优异,左室射血分数在随访末也明显升高。结论 RVNAP在电极参数方面表现出令人满意的长期结果,并在6个月随访后,提高左室射血分数方面作用有利。

关键词:META分析;右室非心尖部起搏;心功能;文献检索

中图分类号:R1,R4

Taking an Example of the Effects of Right Ventricular Pacing on Cardiac Function to Discuss META Analysi

WANG Wei-zong1,YIN Xiang-cui2,ZHANG Yu-jiao1

(1.Shandong University,Jinan 250014,Shandong,China;2.Shandong Qianfoshan Hospital,Jinan 250014,Shandong,China)

Abstract:Objective A meta-analysis of randomized controlled trials (RCTs) was conducted to compare the effects of right ventricular nonapical (RVNA) and right ventricular apical (RVA) pacing on cardiac function. Methods A systematic literature search was performed using MEDLINE, EMBASE, and the Cochrane Library to identify RCTs comparing RVNA pacing with RVA pacing with follow-up ≥2 months. Results Twenty RCTs involving 1,114 patients were included. Compared with RVA pacing, RVNA pacing exhibited not only excellent pacing threshold and R-wave amplitude but also higher impedance. RVNA pacing showed a significant increase in left ventricular ejection fraction (LVEF) at the end of follow-up. Conclusion This meta-analysis found that RVNA pacing exhibited satisfactory long-term lead performance compared with RVA pacing and demonstrated beneficial effects in improving LVEF after the 6-month follow-up.

Key words:META Analysis; Right Ventricular Nonapical Pacing; Cardiac Function; Literature Retrieval

自从心脏起搏器问世以来 [1],因为右室心尖部易于识别并且心尖部起搏具有良好的电极稳定性等优点,右室心尖部起搏(RVAP)一直被认为是治疗症状性病态窦房结综合征或慢性高度房室传导阻滞中安装临时或永久心脏起搏器的首要选择 [2]。然而,越来越多的研究表明,长期RVAP改变了心室激动顺序,引起节段性室壁运动异常,损害了左室收缩及舒张功能,增加了心衰的发生率和死亡率,这将会抵消其潜在的优势 [3~5]。因此,寻找一个具有同步化心室激动顺序的起搏位点从未间断,并且一系列的右心室非心尖部起搏位点被发现 [6, 7],但是,既往关于不同起搏位点的研究得到了不一致的结果 [8~11]。在以前的荟萃分析中,de Cock [12]发现右室非心尖部起搏(RVNAP)较RVAP在血流动力学方面有了很大提高。最近,另一项涉及14个随机对照试验的荟萃分析[13]指出,在一定时间起搏后,RVNAP左室射血分数是高于RVAP的。然而,这项研究只描述了左室射血分数这一指标,且研究表明需要进一步比较更多的参数。我们再次进行META分析来评价不同起搏位点电极的安全性及稳定性,并进一步通过常用的血流动力学参数来评估RVNAP和RVAP对心功能的影响。

1资料与方法

1.1 试验选择 所有比较RVNAP与RVAP关于电参数和(或)血流动力学结果的随机对照试验均被纳入本研究。纳入的试验包括平行对照和交叉设计,随访时间≥2个月。所有的研究都是以人为研究对象,发表形式为中文或英文。

1.2 检索策略

1.3 排除标准 ①非随机对照试验;②试验包括植入心脏除颤器或心室再同步化起搏;③随访时间少于2个月;④结果没涉及到电参数及血流动力学结果。

1.4 质量评估 根据合作网推荐的评估文章真实性的工具,采用基于结构域的评价方法来分析文章质量和风险的偏倚,具体包括以下七个结构域 [14]:随机序列的产成、分配隐藏、实施偏倚、参与者与实施者双盲、结局评估中的盲法、不全结局数据和其他偏倚。

1.5 统计学分析 为了更好地分析试验内及试验间误差,选用DerSimonian-Laird 随机效应模型 [15]对数据进行合并,计算加权平均差(WMV)和95%可信区间 (CIs)。P值、I2进行研究的异质性评价。如异质性显著,通过亚组分析对异质性来源进行探讨。

分两个部分进行荟萃分析,第一个部分评估了不同起搏位点间电极的安全性与稳定性;第二个部分则探讨了其对心功能的影响。

敏感性分析根据各纳入试验的质量评价结果以及各研究的特点进行。发表偏倚评价采用漏斗图及Egger' S检验 [16]。所有统计学数据分析、处理采用Review Manager 5. 1, SAS9. 21软件进行,P < 0. 05认为有统计学差异。

2 结果

2.1 搜索结果 共计检索出2974篇文章。总共9个比较电参数的试验和17个比较中长期心功能的试验 (6个研究为重复的 [8, 17~21])符合本研究的入选标准 [8, 17~35] (筛选步骤见图1)。

图1 文献筛选流程图

2.3 荟萃分析

2.3.1 电参数

2.3.1.1 植入即刻起搏参数

2.3.1.2 随访末起搏参数

2.3.2 血流动力学结果

2.3.2.1 QRS波时限 11篇文章

2.3.2.2 LVEF 15个试验

2.3.2.3 LVEF亚组分析 为了进一步探讨异质性来源,我们进行了两个亚组分析。

亚组2 (右室流出道 vs. 右室间隔部)

为了探讨不同部位非心尖部起搏对左室射血分数的影响,3 讨论

3.1 安全性和稳定性 既往研究表明,尽管RVNAP保留了双室同步收缩顺序,但仍不能代替传统的RVAP成为主要的起搏模式 [1]。与此相反,我们的META分析表明,在起搏即刻和随访末起搏阈值及R波感知上,RVNAP与RVAP无统计学差异。除此之外,随访末,RVNAP阈值较高。起搏即刻RVNAP阈值有一个升高的趋势,但未达到统计差异。可能有如下原因:主动电极同样应用于心尖部起搏 [21, 35],并且电极隔离材料、大小与形状不断升级,使结果差异不显著。对R波感知幅度而言,虽然RVNAP在起搏即刻数值较低,但在随访末,与心尖部达到了一个相似的水平。在起搏即刻,RVAP和RVNAP在阻抗上无差异,但随访末,右室非心尖部(RVNA)阈值较高。起搏阈值反映了起搏器、电极与心肌连接的紧密程度,并且不同位点间阻抗的的差异与电极组织接触界面的紧密度呈正相关 [36]。

3.2 血流动力学结果

3.2.1 QRS波时限 RVAP电激动波从右室心尖部向周围传导,与生理激动顺序相反 [37]。尚无证据表明QRS波时限与心室内机械收缩不同步呈负相关,但QRS波宽度可以反映心室间收缩的同步性 [38]。心室间同步收缩在一定程度上有助于改善心功能。而且,有研究选择最窄的QRS波作为最佳起搏位点的替代指标 [8, 26]。本研究中,QRS波时限在起搏即刻及随访末均较窄,提示RVNAP更接近于生理激动顺序。然而,最窄的QRS波时限是否可作为最佳起搏位点的替代指标尚未达成一致 [39, 40]。

3.2.2 左室射血分数 结果表明与RVAP相比,RVNAP在随访末具有高水平的左室射血分数[14]。

根据第一个亚组分析,我们发现RVNAP在6到12个月亚组上开始在左室射血分数上较RVAP高,且随着时间延长,这一优势得以维持。这一电的不同步性可以延伸到机械模式,使心肌收缩不平衡而导致收缩效率降低 [37]。因为电和机械的不同步,心肌将不可避免的引起代谢及血流动力学的不稳定,包括收缩和舒张功能的紊乱。提前激动的心肌过早的舒张和延迟收缩的心肌共同作用使舒张功能下降[41],这一过程随时间延长而逐渐显现。

另一个亚组分析表明RVAP在随访末左室射血分数上均低于右室间隔部及右室流出道起搏。上述结果的原因可能为右室流出道的复杂结构所引起。右室流出道起搏包括多个起搏位点,具体为间隔部、游离壁和前壁三部分 [42]。有文献表明 [38],间隔部是第一个去极化的位置;也就是说,右室间隔部是最接近于内在传导系统的起搏位点。右室间隔部起搏较RVAP在左室射血分数上为优,故当右心室起搏不能避免时,右室间隔部起搏而非右室流出道起搏与传统心尖部起搏相比,更好的保留了左室收缩功能。较RVAP相比,两组在左室射血分数上均有优势。

3.2.3 其他指标 已经有报道称RVAP因为异常的电激动模式 [41],会逐渐损害左室舒张和收缩功能。我们推测:延长随访期可能使舒张末容积的差异得以显现。在随访末,RVAP和RVNAP在纽约心功能分级上有明显差异。纽约心功能分级作为一种常用的评价心功能的指标,这一差异对RVNAP在改善心功能上优于RVAP提供了更多的证据。回顾性分析这一组纳入的随机对照试验,发现大多数试验 [18, 25, 29]起搏时间超过12个月,可能是得出阳性结果的原因。

4 结论

右室非心尖部(主要为右室间隔)起搏在电极表现上是优秀的,尤其是电极阻抗。RVNAP带来更窄的QRS时限,更好的左室收缩功能和较低级别的纽约心功能分级。右室流出道起搏在最终左室射血分数上与心尖部相比无明显优势。到目前为止,右室间隔部应该被当做为替代右室心尖部的最佳起搏位点。

参考文献:

[1] FRANK HA. Long-term electrical pacing of the heart for Stokes-Adams disease [J]. Heart Bull, 1962, 11:101-104.

[2] Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons [J]. J Am Coll Cardiol, 2008, 51(21):e1-62.

[3] Matsuoka K, Nishino M, Kato H, et al. Right ventricular apical pacing impairs left ventricular twist as well as synchrony: Acute effects of right ventricular apical pacing [J]. J Am Soc Echocardiogr, 2009, 22:914-919.

[4] Nielsen JC, Kristensen L, Andersen HR, et al. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: Echocardiographic and clinical outcome [J]. J Am Coll Cardiol, 2003, 42:614-623.

[5] Fang F, Zhang Q, Chan JY, et al. Deleterious effect of right ventricular apical pacing on left ventricular diastolic function and the impact of pre-existing diastolic disease [J]. Eur Heart J, 2011, 32:1891-1899.

[6] Mond HG, Gammage MD. Selective site pacing: The future of cardiac pacing [J].Pacing Clin Electrophysiol, 2004, 27:835-836.

[7] Mond HG, Vlay SC. Pacing the right ventricular septum: Time to abandon apical pacing [J]. Pacing Clin Electrophysiol, 2010, 33:1293-1297.

[8] Tse HF, Yu C, Wong KK, et al. Functional abnormalities in patients with permanent right ventricular pacing: The effect of sites of electrical stimulation [J]. J Am Coll Cardiol, 2002, 40:1451-1458.

[9] Ng AC, Allman C, Vidaic J, et al. Longterm impact of right ventricular septal versus apical pacing on left ventricular synchrony and function in patients with second- or third-degree heart block [J]. Am J Cardiol, 2009, 103:1096-1101.

[10] Padeletti L, Lieberman R, Schreuder J, et al. Acute effects of his bundle pacing versus left ventricular and right ventricular pacing on left ventricular function [J]. Am J Cardiol, 2007, 100:1556-1560.

[11] Yamano T, Kubo T, Takarada S, et al. Advantage of right ventricular outflow tract pacing on Cardiac function and coronary circulation in comparison with right ventricular apex pacing [J]. J Am Soc Echocardiogr, 2010, 23:1177-1182.

[12] de Cock CC, Giudici MC, Twisk JW. Comparison of the haemodynamic effects of right ventricular outflow-tract pacing with right ventricular apex pacing: A quantitative review [J]. Europace, 2003, 5:275-278.

[13] Shimony A, Eisenberg MJ, Filion KB, et al. Beneficial effects of right ventricular non-apical vs. apical pacing: A systematic review and meta-analysis of randomized-controlled trials [J]. Europace, 2012, 14:81-91.

[14] Higgins JPT, Green S. Assessing risk of bias in included studies. In: Cochrane handbook for systematic reviews of interventions [J]. version 5.1.0, updated March 2011, (Accessed March 1, 2012).

[15] DerSimonian R, Laird N. Meta-analysis in clinical trials [J]. Control Clin Trials, 1986, 7(3):177-188.

[16] Egger M, Davey Smith G, Schneider M, et al. Bias in metaanalysis detected by a simple, graphical test [J]. BMJ, 1997, 315:629-634.

[17] Tse HF, Wong KK, Siu CW, et al. Impacts of ventricular rate regularization pacing at right ventricular apical vs. septal sites on left ventricular function and exercise capacity in patients with permanent atrial fibrillation [J]. Europace, 2009, 11:594-600.

[18] Flevari P, Leftheriotis D, Fountoulaki K, et al. Long-term nonoutflow septal versus apical right ventricular pacing: Relation to left ventricular dyssynchrony [J]. Pacing Clin Electrophysiol, 2009, 32:354-362.

[19] Kypta A, Steinwender C, Kammler J, et al. Longterm outcomes in patients with atrioventricular block undergoing septal ventricular lead implantation compared with standard apical pacing [J]. Europace, 2008, 10:574-579.

[20] Victor F, Mabo P, Mansour H, et al. A randomized comparison of permanent septal versus apical right ventricular pacing: Short-term results [J]. J Cardiovasc Electrophysiol, 2006, 17:238-2342.

[21] Stambler BS, Ellenbogen K, Zhang X, et al. Right ventricular outflow versus apical pacing in pacemaker patients with congestive heart failure and atrial fibrillation [J]. J Cardiovasc Electrophysiol, 2003, 14:1180-1186.

[22] Wang F, Shi H, Sun Y, et al. Right ventricular outflow pacing induces less regional wall motion abnormalities in the left ventricle compared with apical pacing [J]. Europace, 2012,; 14:351-357.

[23] Nikoo MH, Ghaedian MM, Kafi M, et al. Effects of right ventricular septal versus apical pacing on plasma natriuretic peptide levels [J]. J Cardiovasc Dis Res, 2011, 2:104-109.

[24] Leong DP, Mitchell AM, Salna I, et al. Long-term mechanical consequences of permanent right ventricular pacing: Effect of pacing site [J]. J Cardiovasc Electrophysiol, 2010, 21:1120-1126.

[25] Cano O, Osca J, Sancho-Tello MJ, et al. Comparison of effectiveness of right ventricular septal pacing versus right ventricular apical pacing [J]. Am J Cardiol, 2010, 105:1426-1432.

[26] Gong X, Su Y, Pan W, et al. Is right ventricular outflow tract pacing superior to right ventricular apex pacing in patients with normal cardiac function [J].Clin Cardiol, 2009, 32:695-699.

[27] Dabrowska-Kugacka A, Lewicka-Nowak E, Tybura S, et al. Survival analysis in patients with preserved left ventricular function and standard indications for permanent cardiac pacing randomized to right ventricular apical or septal outflow tract pacing [J]. Circ J, 2009, 73:1812-1819.

[28] Occhetta E, Bortnik M, Magnani A, et al. Prevention of ventricular desynchronization by permanent para-Hisian pacing after atrioventricular node ablation in chronic atrial fibrillation: A crossover, blinded, randomized study versus apical right ventricular pacing [J]. J Am Coll Cardiol, 2006, 47:1938-1945.

[29] Lewicka-Nowak E, Dabrowska-Kugacka A, Tybura S, Krzymi? nskaStasiuk E, et al. Right ventricular apex versus right ventricular outflow tract pacing: Prospective, randomised, long-term clinical and echocardiographic evaluation [J]. Kardiol Pol, 2006, 64:1082-1091.

[30] Bourke JP, Hawkins T, Keavey P, et al. Evolution of ventricular function during permanent pacing from either right ventricular apex or outflow tract following AV-junctional ablation for atrial fibrillation [J]. Europace, 2002, 4:219- 228.

[31] Victor F, Leclercq C, Mabo P, et al. Optimal right ventricular pacing site in chronically implanted patients: A prospective randomized crossover comparison of apical and outflow tract pacing [J]. J Am Coll Cardiol, 1999, 33:311- 316.

[32] Mera F, DeLurgio DB, Patterson RE, et al. A comparison of ventricular function during high right ventricular septal and apical pacing after his-bundle ablation for refractory atrial fibrillation [J]. Pacing Clin Electrophysiol, 1999, 22:1234-1239.

[33] Deng XQ, Cai L, Tang J, et al. Safety and efficiency of pacing at right ventricular outflow versus at ventricular cardiac apex [J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2008, 36:726- 728.

[34] Stambler BS, Ellenbogen KA, Liu Z, et al. ROVA Trial Investigators. Serial changes in right ventricular apical pacing lead impedance predict changes in left ventricular ejection fraction and functional class in heart failure patients [J]. Pacing Clin Electrophysiol, 2005, 28:50-53.

[35] Barin ES, Jones SM, Ward DE, et al. The right ventricular outflow tract as an alternative permanent pacing site: Long-term follow-up [J]. Pacing Clin Electrophysiol, 1991, 14:3-6.

[36] de Voogt WG. Pacemaker leads: Performance and progress [J]. Am J Cardiol, 1999, 83:187D-91D.

[37] Prinzen FW, Hunter WC, Wyman BT, et al. Mapping of regional myocardial strain and work during ventricular pacing: Experimental study using magnetic resonance imaging tagging [J]. J Am Coll Cardiol, 1999, 33:1735-1742.

[38] Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block [J]. Circulation, 2002, 106:1760-1763.

[39] Peschar M, de Swart H, Michels KJ, et al. Left ventricular septal and apex pacing for optimal pump function in canine hearts [J]. J Am Coll Cardiol, 2003, 41:1218-1226.

[40] Schwaab B, Fr¨ ohlig G, Alexander C, et al. Influence of right ventricular stimulation site on left ventricular function in atrial synchronous ventricular pacing [J]. J Am Coll Cardiol, 1999, 33:317- 323.

[41] Prinzen FW, Peschar M. Relation between the pacing induced sequence of activation and left ventricular pump function in animals [J]. Pacing Clin Electrophysiol, 2002, 25:484-498.

[42] Hillock RJ, Mond HG. Pacing the right ventricular outflow tract septum: Time to embrace the future [J]. Europace, 2012, 14:28-35.编辑/许言

上一篇:产后尿潴留、穴位封闭与护理质量的关联性 下一篇:稳心颗粒联合倍他乐克治疗快速型心率失常的疗...