火焰原子吸收光谱法的测定

时间:2022-10-04 06:45:16

摘要:对铝的原子吸收光谱法测定进行了综述,介绍了测定的方法、测定时的干扰情况和干扰的消除、铝的原子化机理、以及各种测定方法的发展概况和应用领域 。

Abstract: on aluminium by atomic absorption spectrometry are reviewed in this paper, introduced the determination method, determination of the interference and elimination of interference, aluminum atomization mechanism, as well as various methods for determination of general situation of development and application.

关键词:原子吸收,关谱法,乙炔火焰

Key words: atomic absorption spectrum method, close, acetylene flame method

中图分类号:O562文献标识码: A 文章编号:

前言

一、火焰原子吸收光谱法

(一)空气-乙炔火焰原子吸收法

1普通空气-乙炔火焰法

原子吸收法中空气-乙炔火焰是应用最广泛的原子化法。铝在该火焰中形成耐热氧化铝,其熔点是2045℃,沸点是2980℃,故一般不能在此火焰中直接测定铝。邓世林等[1]用空气-乙炔火焰原子吸收法直接测定土壤中的铝。同时研究了添加0.05mol/L的水溶性有机化合物四甲基氯化铵可使铝的测定灵敏度提高约7倍,其特征浓度为43㎍/ml/1%。同时考察了HCL、HNO3、HCLO4、H2SO4对测定铝的影响,极少量的HNO3、HCLO4、H2SO4均对铝的吸光度产生很大影响,甚至完全抑制铝的信号。HCL浓度在2mol/L内不影响铝的测定。因此,在样品处理及测定过程中须以HCL为介质。另外,共存离子K+、Ca2+、Fe3+、Mn2+在添加四甲基氯化铵的情况下,基本上不干扰铝的测定。

2 氧屏蔽空气-乙炔火焰法

史再新等用氧屏蔽空气-乙炔火焰法测定钢中铝(0.1~10%),分析方法比较简单。结果表明,HNO3对铝略有增感作用,HCL略有抑制作用。共存元素对铝的测定也有影响:Fe、Mo略有抑制作用,Ni、Mn略有增感作用;三氯化钛对铝的吸收有增感作用,并能抑制其它元素的干扰,改善稳定性。但此法耗气量大、噪音高、具有较强的火焰发射。

3 富氧空气-乙炔火焰法

翁永和等用富氧空气-乙炔火焰法测定铝,比较了不同有机试剂在此火焰中对铝的增感效应。当有机试剂的结构是在苯环的邻位均含有羟基及羧基的铝功能团,如铬天青S、铝试剂、钛铁试剂、磺基水杨酸及邻苯二甲酸氢钾等时,均具有相似的及最大的增感效应,其增感倍数约为2.0,特征浓度可达1.2㎍/mL。与氧屏蔽空气-乙炔火焰法相比,此法耗气量小,噪音低,火焰稳定,且不易回火。

4 空气-乙炔火焰间接原子吸收法

铝在空气-乙炔火焰中易形成难解离的耐热氧化铝,灵敏度较低。用富氧法,特征浓度为1.2㎍/mL。陆九韶等用间接火焰原子吸收光谱法测定了水和废水中铝,根据Cu2+-EDTA与Al3+、PAN的定量交换反应,生成物Cu2+-PAN可被氯仿萃取,用空气-乙炔火焰法测定水相中残余铜,从而间接测定铝,铝浓度在0.1~1.0mg/L范围内有良好的线性关系。酸度范围在PH3.8~5.0时曲线呈直线,故选择PH4.5。Cu2+、Ni2+对实验干扰严重,但在加入Cu2+-EDTA前,先加入PAN,则1.0mg/L的Cu2+和0.1 Ni2+对实验无干扰。Fe3+干扰严重,加入抗坏血酸可消除Fe3+的干扰。F-对测定亦有干扰,加入硼酸可消除。利用此法间接测铝,浓度范围在0.05~100/L。

(二) 笑气-乙炔火焰原子吸收法

用空气-乙炔火焰测定铝,火焰温度不够高,灵敏度较低。故目前大都用笑气-乙炔火焰测定铝。曾报道用笑气-乙炔火焰法测定酸性废水中的铝,通过全程序空白试验得到本放法的最低检出浓度可至0.006/L。采用笑气-乙炔火焰温度高,能促使离解能大的化合物解离,同时其富燃火焰中除了C、CO、CH等未分解产物之外还有如CN、NH等成分,它们具有强烈的还原性,能更有效地抢夺金属氧化物中的氧,从而使许多高温难解离的金属氧化物原子化,使Be、B、Si、W、Mo、Ba、稀土等难熔性氧化物的元素对测定有干扰。但是因为这种火焰温度高,能排除许多化学干扰。在试液中加进大量的碱金属(1mL/ mL~2 mL/ mL)能减少电离干扰。

二、石墨炉原子吸收法

火焰原子吸收法具有快速、准确等优点,特别是笑气-乙炔火焰的应用使铝的测定灵敏度进一步提高,但测定痕量铝时仍要预先富集。故近年来对石墨炉原子吸收法测定铝的研究较多,但灵敏度尚不能满足对某些试样的直接分析,而且测定中存在着非光谱干扰,其干扰程度取决于石墨管表面的化学性质和所使用的载气。石墨炉原子吸收的基体干扰十分严重,为减少和消除基体干扰,最终实现无干扰测定,人们进行了许多研究,比较行之有效的方法是联合运用平台、基体改进、表面涂层、Zeeman效应扣除背景、梯度升温和精确的自动进样技术。

(一)普通石墨炉原子吸收法

Shaw和Ottaway用普通石墨管测定了2/L的铝,相对标准偏差为7%。由于氯离子的干扰,只用硝酸溶解样品,这种就限制了此法的应用。在用硝酸和盐酸溶解样品时氯离子的干扰必须设法消除,可以通过加入硫酸、氨水和硫酸铵等形成易挥发的氯化物以消除干扰。尤其是硫酸铵的加入,能得到最好的重现性。硫酸钠和硫化钠的存在也会干扰铝的测定,可通过用模拟基体的工作曲线来消除干扰。此外,由于石墨管的不同也会引起灵敏度的变化,因此在使用之前,每个石墨管都要空烧三次。Halls等在测定透析液中铝时也考查了基体、酸度和石墨炉的影响。实验表明,硝酸的加入可使回收率大大增加,1%(V/V)的HNO3可改善基体影响,2%(V/V)的HNO3可完全抑制基体效应。硫酸也具有这样的作用,但对于常规分析,HNO3优于H2SO4,因为硫酸粘度大,难转移。且用2%HNO3时可适当减少灰化时间。在测定血清中铝时,为使石墨管内不生成碳垢,克服血清基体产生的高背景,何世玉等提出采用稀释法。即用高纯水作稀释剂,不需使用基体改进剂和氘灯背景校正,特征含量为18pg,相对标准偏差5%左右,重现性良好。以高纯水作稀释剂,空白值低,这是此法最有利的条件。于金润等采用基体校正方法,可在不用背景扣除装置、不经分离基体和预浓缩样品溶液的情况下,直接测定纯铁及低合金钢中0.0002~0.01%的酸溶铝和0.0005~0.01%的酸不溶铝。其中铁的背景吸收采用与样品相同基体的溶液来校正。

三 铝原子化机理

按文献的观点,铝在石墨炉中的原子化过程可分为下列三种情况,即

(1)AlCl3(s或l)AlCl3(g)Al(g)3Cl(g)

因氯化物易挥发分解,故表现为灰化损失,原子化时已不存在。

(2)Al2O3(s)3C(s)2Al(s或l)3CO(g)2Al(g)

   但Al2O3除难能被碳还原外,还存在与碳的歧化反应

      2Al2O39CAl4C36CO

Al4C3虽然在3000℃会分解放出原子态铝,但正是Al4C3的生成与分解,使铝的线性遭到破坏,石墨管寿命变短,测量精度下降,所以Slavin[18]反复强调用热解石墨管。

(3)Al2O3(g)AlO(g)Al(g)O2(g)Al(g)O(g)

  四  结束语

综上所述,火焰原子吸收法尤其是笑气-乙炔火焰法测定铝具有较好的灵敏度,测定某些试样中的铝是可行的;石墨炉原子吸收法测定铝的灵敏度高于笑气-乙炔火焰,尤其是应用基体改进剂和涂层石墨管,灵敏度得到显著提高,是目前应用比较广泛的一种方法。总而言之,原子吸收光谱法测定铝,具有快速、简单的特点,适于普及应用。

参考文献

[1] 邓世林,李新凤,郭小林.铝的空气-乙炔火焰原子吸收法测定的研究[J].光谱学与光谱分析.1999,19(3):411~413

[2] 史再新,戴亚明.原子吸收分光光度法测定钢中铝[J].理化(化学分析).1978,14(4):10

[3] 翁永和,魏继中,马光正等.富氧空气乙炔火焰原子吸收光谱法测铝的研究[J].分析化学.1990,18(1):72

上一篇:浅析提高建筑施工技术管理水平的意义及措施 下一篇:浅析房屋建筑施工的技术措施