风力发电机组控制系统的探讨

时间:2022-10-03 03:58:23

风力发电机组控制系统的探讨

摘要 风力发电场运行情况多样,动态特性复杂, 在电气设备、保护控制系统的选型和设计上有一定的特殊性,因此,在设计过程中尽可能多地熟悉掌握各类风电电气设备的技术特性。本文简要介绍了风力发电机组及其控制系统主要设备的工作原理和技术特点,并对风力发电控制设备的关键技术研究进行了探讨

关键词:风力发电;变流器;现场控制

中图分类号:TM315 文献标识码:A 文章编号:

1 引言

在能源短缺和环境趋向恶化的今天,风能作为一种可再生清洁能源,日益为世界各国所重视和开发。由于风能开发有着巨大的经济、社会、环保价值和发展前景,近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快。德国、西班牙、丹麦、美国等欧美国家在风力发电理论与技术研发方面起步较早,因而目前处于世界领先地位。风电是电力行业的先进生产力,资源无尽、成本低廉。我国已将风力发电作为新能源发展的一个重点,在风力资源好、用电量需求大的地方,有计划、有步骤地建设一定规模的风力发电场。在经济高速发展的过程中,既要解决电力供应不足问题,又要保护好生态环境。在今后的规划建设过程中,调整能源结构,逐步开发清洁能源,兴建核电、天然气发电、风力发电等清洁能源电站,实现电力结构多元化,是今后我省电力发展的重要方向。但是风力发电与其他发电方式相比,遭遇自然条件复杂,设备技术含量高,给电力设计又带来了许多新课题。譬如风力电场运行情况多样,动态特性复杂,在风电大量并网前,应对其功率特性和潜在风险进行分析;而且风电单机容量小,分布分散,需要采取集群式控制。这在电气设备、保护控制系统的选型和设计上有一定的特殊性,电力设计单位在进行风电设计时需要应尽可能多地详细掌握各类风电电气设备的技术特性。

2 风力发电场及其机组控制系统

风电场设备包括风机、输变电装置和集中监控系统等。风电场设备常年在野外运行,风向、风速不可控,风电机组承受极为复杂恶劣的交变载荷。又因为风的能量密度小,风电机组需要庞大的机体,因此对风力发电机组材质要求高,设计和制造难度均较大。国际上生产 风电设备的知名企业有:西班牙Gamesa Eólica 公司,丹麦 Vestas 公司,美国GE公司等,其技术已比较成熟,应用也比较多。国内现有的风电机组制造商尚处于技术引进和经验积累阶段。风力发电机按发电机驱动方式可分为双馈和直驱两种。国际先进的无齿轮箱直驱风力发电机,多沿用低速多极永磁发电机,并使用一台全功率变流器将频率变化的风电送入电网,其中电控产品的特点可根据风速改变风轮转速,而保持上网频率不变,提高了风能利用率;还可以调节发电机有功功率、无功功率和功率因数,有利于电网稳定。风力发电机组的主要设计难点在于齿轮箱(仅限于双馈机组)、叶片和电控系统。本文

着重介绍电控系统的技术原理和技术关键。

双馈电机的结构类似于绕线式感应电机,定子绕组也由具有固定频率的对称三相电源激励,所不同的是转子绕组具有可调节频率的三相电源激励,一般采用交-交变频器或交-直-交变频器供以低频电流。风力发电机组的电控系统主要包括风力发电变流器,现场控制设备,变桨传动的驱动机构等,主要结构和原理为:

(1)风力发电并网变流器

国际先进的兆瓦级变速恒频直驱风力发电系统多沿用低速多极永磁发电机,使用一台全功率变流器,通过交直交变流器将风机发出的变化的电压和频率的电能,经过交直交变流器变为稳定电压和频率的电力馈入电网。是将发电机输出电能通过整流、逆变变换成要求频率的电能(交-直-交方式),然而由于电力变流装置处于主功率通道,其容量一般为发电机容量的 1.1~1.3 倍,双馈风力发电变流器则是交-交变频器或交-直-交变频器供以低频电流调整交流励磁电流的幅值、频率和相位。通过改变励磁频率,可调节转速。这样在负荷突然变化时,迅速改变电机的转速,充分利用转子的动能,释放和吸收负荷,对电网的扰动远比常规电机小。另外,通过调节转子励磁电流的幅值和相位,可达到调节有功功率和无功功率的目的。

(2)现场控制设备

现场控制设备主要包含顺序控制,数据采集与通信,联锁保护三部分。作为顺序控制,其主要包含的功能有:①迎风机构的控制;②电机各种工况的切换;③机组的起动与停机;④紧急停机控制;⑤自动并网/解列控制。保护系统主要是传感器和工控机的集成,主要为停机和紧急停机。保护系统具有最高的优先权,它可以进入至少两套刹车系统,一旦超出正常的设定值,保护系统立即动作起动刹车,同时还可以使风机 90°侧风。使系统处于安全状态。

3 风力发电机组控制系统的关键技术

3.1 风力发电机变流器

风力发电变流装置采用经过验证的成熟的电力电子变频技术,可以根据要求进行有功功率、无功功率及频率输出的任意调节,谐波分量低,具有很强的低电压穿越能力以适应电网扰动,并网特性完全满足目前国际上最新风电并网技术标准的要求。风能的随机性、阵风性、不确定性,导致风力机组所输出的电功率频率、电压均易随风速而变,因此必须对电能品质进行控制和整定。而风力发电系统具有很强的非线性和不确定性,多干扰等特点,所有基于某些有效系统模型的控制也仅适合于某个特定的系统和一定工作周期,因此风力发电系统模型的确定也很困难。现在采用的直驱风力发电机,由于采用了变速恒频控制技术,不仅节省了无功补偿器,而且还可以捕获更多的风能,并在风能不确定的条件下使发电机输出稳定。

3.2 风电场的控制与保护装置

风电场相应的顺序控制、安全联锁保护等机构,作为风电场的控制与保护,大致可以分为以下几个功能模块:①连续调节控制。②顺序控制(SCS)。③数据采集(DAS)。④联锁保护。⑤管理和信息处理。从现场控制的结构来看,风电场所采用的风电机组都是以大型并网型机组为主,各机组有自己的控制系统,用来采集自然参数,机组自身数据及状态,通过计算、分析、判断而控制机组的起动、停机、调向、刹车和开启油泵等一系列控制和保护动作,能使单台风力发电机组实现全部自动控制,无需人为干预。当这些性能优良的风电机组安装在某一风电场时,集中监控管理各风电机组的运行数据、状态、保护装置动作情况、故障类型等。为了实现上述功能,下位机(机组控制机)控制系统应能将机组的数据、状态和故障情况等通过专用的通信装置和接口电路与中央控制室的上位计算机通信,同时上位机应能向下位机传达控制指令,由下位机的控制系统执行相应的动作,从而实现远程监控功能。

4 结论

风力发电在我国是新兴行业,对改善环境,优化资源配置有着不可或缺的作用。大力发展风电是我国改善能源结构的战略举措。电力设计院应在技术上和工程设计实践上积极探索,熟悉风力发电场电气设备结构以及特殊的运行情况,对风力发电的动态特性具备更多的分析手段,在集散控制系统设计和网架构建、通信方式等方面随时跟踪最新技术动态,在设计上有新的突破,不断提高风力发电的工程设计水平。

参考文献

[1] 曾婧婧,杨平,徐春梅,蒋式勤.风力发电控制系统研究[J]. 自动化仪表. 2006(S1)

[2] 郭金东,赵栋利,林资旭,许洪华.兆瓦级变速恒频风力发电机组控制系统[J]. 中国电机工程学报. 2007(06)

[3] 刘细平,林鹤云.风力发电机及风力发电控制技术综述[J]. 大电机技术. 2007(03)

上一篇:试述智能建筑弱电技术 下一篇:房地产网络营销的探讨