电容器材料化学实验的教学论述

时间:2022-09-27 06:29:39

电容器材料化学实验的教学论述

1材料结构表征探讨

(1)结合已有知识将理论简单化,培养学生对科学研究的兴趣。对实验结果所得产物,教师结合学生已有的知识,引导学生联想一般情况下有哪些方法来表征材料的结构,学生根据理论教学部分的知识,提出一些材料表征方法,如X射线衍射分析(XRD)、扫描电子显微镜(SEM)、红外光谱、拉曼光谱、热分析等。教师可根据所制备材料的实际情况及实验条件,确定用哪些仪器进行表征。本实验只需要知道产物的成分、尺寸及形貌,因此采用简单的X射线衍射分析及扫描电子显微镜进行表征。教师可采用通俗易懂的语言对其测试原理进行讲解。例如:用X射线衍射判断物质成分的分析方法,若按理论来讲,涉及到光学、晶体学、电子学等较深奥的理论知识,简单的讲每种晶体本身的取向都对应一套标准衍射数据,根据实验测得X射线衍射数据中衍射峰的位置,从X射线衍射标准卡片库中找出相应的物质。如同人的指纹,每个人的指纹都是有区别的,可根据指纹判断不同的人。结合已有知识将理论简单化对测试原理有了一定了解,又减少了他们对研究型化学实验的畏惧感,培养了学生对科学研究的兴趣。

(2)实验与理论结合,培养学生科学研究的兴趣。仪器及测试条件对测试结果影响较大,首先教师介绍在本测试中的测试条件。此部分测试采用较贵重的仪器,操作需要具备一些专业知识,因此在教师测试时可让学生在旁边观察。图1是制备样品的XRD测试结果,学生根据理论知识从图1中观察三强峰的位置,根据三强峰的位置,从物质标准卡片库中找出可以与图中衍射峰位置对应的卡片,经过查找对比,学生发现与Ni(OH)2标准卡片一致(JCPDS:22-752),且无杂峰出现,可判断所制备的样品为纯的Ni(OH)2。教师启发学生思考能否从理论上计算Ni(OH)2颗粒的大小,学生利用谢乐公式D=0.89λ/(Bcosθ)(λ为X射线波长,B为衍射峰半高宽,θ为衍射角),结合图中半高宽计算其颗粒的大小,通过计算其晶粒大小为12nm,说明制备的材料为纳米Ni(OH)2。通过X射线衍射分析实验,使理论与实验紧密结合,培养学生对科学研究的兴趣。

(3)实验与观察结合,培养学生科学创造兴趣。合成的Ni(OH)2电极材料的形貌可借助于SEM进行观察。学生观察到的不同放大倍数图片如图2所示。学生发现合成的Ni(OH)2电极材料,由纳米片垂直交错连接形成的球状结构,纳米片厚度约10nm,与通过XRD理论计算的纳米尺寸相吻合。教师提出生成此结构的原因让学生进行讨论,主要从尿素及SDS在反应中的作用进行考虑。很多同学只考虑到尿素在高温下能分解产生氨提供OH-,而SDS起到表面活性剂的作用。教师对尿素与SDS的综合作用形成此结构的原因进行补充解释。首先,在静电力的作用下SDS逐渐被Ni2+替代[8];由于Lewis的存在作用,配位效应使尿素能够与Ni2+进行配位[9]。反应温度的增加,尿素分子逐渐水解出氨分子,使前驱体晶体均匀成核。随着反应时间的持续,晶体逐渐聚集形成片状,片状晶体自组装形成3D花状结构[10,11]。学生对表面活性剂很感兴趣,提出不同表面活性剂合成出的样品形貌可能有差异,可通过不同表面活性剂合成不同形貌样品。通过SEM实验与观察结合,培养了学生科学创造兴趣。同时也使学生了解了研究型化学实验对结果分析的要求,不但要知道其表面现象,而且更重要的是对其进行理论分析与合理解释,为培养学生的科研能力打下良好的基础。

2电化学性能探讨

(1)培养学生动手能力,增加学生科学研究与创造兴趣。电极制备的好坏将直接影响电化学性能的测试,教师可先作示范,根据制备电极的要求,将Ni(OH)2粉末与乙炔黑、石墨及聚四氟乙烯乳液以一定的比例混合均匀,在对辊机上压成薄片。活性物质薄片在一定的压力下压在泡沫镍集流体上。将压制好的电极片放在真空干燥箱中干燥。同时要对电极制备过程中的注意事项进行说明,比如Ni(OH)2粉末与乙炔黑、石墨及聚四氟乙烯混合时尽量均匀,对辊机上压成薄片时应尽量薄,电极片彻底干燥后再称量等。通过示范讲解,学生都能做出较理想的Ni(OH)2测试电极,提高了学生的动手能力。教师根据电化学性能测试需要,提出电极的循环伏安、充放电及交流阻抗测试均在电化学工作站上进行。根据无机化学中所学的溶液配置,将KOH配成测试所需浓度的KOH溶液。再根据电化学性能测试连接图(图3)进行正确连接。通过提高学生的动手能力,调动了学生的主动性和积极性,激发他们对研究型化学实验的兴趣和热情。

(2)培养学生分析和解决问题的能力,增加学生科学研究与创造兴趣。为提高学生分析和解决问题的能力,在电化学测试中,要求学生测试不同扫描速度的循环伏安、不同电流密度下的恒流充放电及开路下的交流阻抗,并注意观察测试过程中曲线形状、溶液及电极附近出现的现象。在循环伏安测试时,学生观察到曲线形状非矩形,且随着扫描速度的改变发生改变;溶液中在电极附近会有气泡产生,表现为出现明显的峰P1与P2。此时,教师为发挥学生的主观能动性,培养学生的学习主动性,提出让学生从电化学资料上查找有关Ni(OH)2电化学反应的材料,学生查得在此过程中由Ni(OH)2氧化成NiOOH出现的阳极峰P1,阴极峰P2是其逆过程,学生由此可判断Ni(OH)2电极材料的电容主要来自于氧化还原反应的赝电容。还可从循环伏安的积分面积判断随扫描速度的增大比电容在减小。在循环伏安测试中,学生学会如何分析判断氧化还原反应及赝电容,加深了对电化学理论知识的理解,提高了分析和解决问题的能力。同一问题进行验证,培养学生分析和解决问题的能力。为了对循环伏安结果进行验证,进行恒流充放电测试。教师给定学生测试电压范围及不同电流密度,要求根据曲线形状判断所属电容性质,并且根据放电曲线、比电容计算公式计算比电容的大小,根据比电容大小绘出比电容随电流密度变化曲线,观察结果是否与循环伏安测试一致。学生发现不同电流密度放电曲线时间并非与电压成正比,说明主要是赝电容特征;且比电容随电流密度的增大而减小,此结果与循环伏安测试一致。从恒流充放电与循环伏安测试对比中,学生明白了研究型化学实验对同一个问题可从多方面进行验证,培养了学生分析和解决问题的能力,为以后从事科研工作打下良好的基础。通过实验类比,培养学生分析和解决问题的能力。在进行电化学阻抗测试时,教师要求学生设定测试频率范围及振幅。以此条件测试其开路电压,在开路电压下测试电极的电化学阻抗,画出电化学阻抗等效电路图并对阻抗图谱进行理论分析。教师要求学生可通过类比其它体系的电化学阻抗测试图解释此阻抗图谱。学生提出电极的交流阻抗图可分成三部分:高频区、中频区和低频区。高频区与实轴Z'的截距表示电极内阻Rb。高频区第一象限中出现一段较小的圆弧,该圆弧的直径为电化学反应电阻Rct。通过实验类比,增加了学生分析和解决问题的能力,培养了学生科学研究与创造兴趣。学生有意向将此法扩展到其他体系如Co3O4、NiO、MnO2等进行研究型实验,探讨影响电极材料电化学性能的各种因素。

3结语

通过超级电容器电极材料研究型化学实验的教学,使学生能够了解目前超级电容器电极材料方面的科学前沿问题,熟悉如何设计研究型化学实验方案,提高学生分析问题和解决问题的能力。对于研究型化学实验,采用启发式教学,合理设计研究型化学实验及问题,结合已有知识将理论简单化,实验与理论、观察相结合,培养学生的观察能力、思维能力、知识运用能力、分析和解决问题的能力,增加了学生对科学研究与创造的兴趣。有利于将学生培养成为具有创新能力的高素质人才,为以后的工作及研究深造打下良好的基础。

作者:于占军 殷榕灿 单位:阜阳师范学院

上一篇:超分子组装与聚合研讨的进展 下一篇:虚拟实验室的混合学习活动综述