高性能钢管微膨胀混凝土在水利工程中的应用

时间:2022-09-20 11:41:45

高性能钢管微膨胀混凝土在水利工程中的应用

【摘 要】针对苏州地区多项水利工程进行了详细分析,分析各种因素对钢管微膨胀混凝土性质的影响,优化设计配合比,控制了钢管钢管微膨胀混凝土在设计过程中应注意的几个控制指标,加快钢管混凝土在水利工程中的进一步推广应用。

【关键词】膨胀混凝土;套箍作用;三向应力;钢管

High-performance steel pipe micro-expansion of concrete in hydraulic

Lu Wei-lin1 ,Xie Jian-xue2,Xu Li-jun3

(1.Suzhou City of the City Water Conservancy Bureau Suzhou Jiangsu 215131;

2.Suzhou Park Construction Engineering Consultants Co., Ltd Suzhou Jiangsu 215000;

3.Suzhou University of Science and Technology Institute of Architectural Design Co., Ltd Suzhou Jiangsu 215000)

【Abstract】Analyzed in detail for a number of water conservancy project of the Suzhou area, analysis of all factors to speed up the steel micro-expansion properties of concrete, to optimize the design mixture ratio control of the steel pipe steel pipe micro-expansion concrete in the design process should be noted that several control indicatorsfurther promote the use of concrete filled steel tube in water conservancy.

【Key words】Expansion of concrete;Confinement effect;Three-dimensional stress;Steel pipe

膨胀混凝土是近年来发展较快的一种特种混凝土。混凝土中的膨胀组份能使混凝土产生体积膨胀,全部或部分抵消混凝土的干缩变形,从而减轻混凝土的开裂病害。若混凝土中存在限制体(如钢筋、钢管等),限制体与混凝土之间的握裹力将使其随混凝土的膨胀而产生伸长变形,并同时对混凝土施加压应力。随后,混凝土因受压应力作用而产生弹性压缩变形。这样,当混凝土承受外界荷载时,荷载所产生的拉应力可以被预先所具有的压应力抵消,混凝土实际承受的拉应力减小,因而混凝土结构的抗拉性能可得到有效的改善。最近几年,我国在钢管砼应用技术方面发展很快,钢管内灌注高性能微膨胀混凝土,以提高钢管的承载能力,提高构件的稳定性。在钢管中灌注的一般是C40~C50的高性能微膨胀混凝土。该混凝土施工要求早期强度高,高流态,缓凝,自密实及可泵性非常好,钢管混凝土为微应力混凝土。因三向应力混凝土的主要特性是强度高,变形性好,在外荷载作用下,由于钢管约束其内部核心混凝土的横向变形,使在三向应力作用下的核心混凝土的强度比普通浇注的混凝土提高了2~3倍。三向应力作用下的混凝土可看作弹塑性材料,当压缩应变达0.002时,不但仍有承载能力,而且表面不发生裂缝,它是一种很好的抗震材料。所以设置微应力,可提高构件的承载力及改变普通灌注法造成混凝土和钢管间有间隙的现象。在设计中确定微膨胀率和如何设计该种配合比是关键因素。钢管内部混凝土质量对工程结构安全影响很大,稍有不慎,就会出现质量事故,造成泵送困难,内有空气,不饱满,混凝土和钢管间有收缩空隙及承重能力下降等现象。几年来,我们针对苏州地区多项水利工程进行了详细分析,经工程实践应用证明效果良好。

1. 材料

1.1 水泥

膨胀混凝土加水拌和后,膨胀水泥迅速水化并产生大量水化产物钙矾石和氢氧化钙。此时强度组份CSH凝胶的数量并不很多,水化产物不能形成网状结构,混凝土只处于塑性状态,具有很强的变形能力,因此水化产物中的膨胀组份向充水空间膨胀时,混凝土并不表现出宏观膨胀变形。混凝土进一步水化以后,水化产物逐渐搭接、连生起来,并形成一定的初始强度,此时混凝土才开始逐渐膨胀。随着水泥的进一步水化,混凝土的强度则进一步提高,

设计高性能微膨胀混凝土的水泥用量不宜过大,选择水泥时应选择525R早强型水泥为主体。水泥矿物组成中C3A和C3S对水化速度和强度发挥起决定作用。C3S与水反应快,凝结硬化也快,早、后期强度都高。因此,控制C3S在40%~50%为宜;C2S与水反应慢,硬化也慢,早强低,但后期强度高,产生水化热低,C2S和C3S占水泥成 分的70%~74%;C3A与水反非常快,水化热也高,但强度不高,所控制C3A在5%~9%;当减水剂加到水泥――水系统中,首先被吸附C3A,C3A含量高,吸附的就多,使C3S和C2S吸附的就少。因此,C3A含量高的,减水效果就差。而水泥中碱含量过高,使水泥凝结时间缩短,早强及流动性降低。水泥细度大,有利于减水剂增强效果。所以配制高性能微膨胀混凝土选择水泥时,应全面考虑,稍有不慎,会造成性能降低,膨胀值过大或过小,造成混凝土收缩,钢管内不饱满。

1.2 细骨料。

配制高性能微膨胀混凝土要求使用干净的河砂。使用时,必须考虑到砂中的云母含量、硫化物含量、含泥量和压碎指标值,该四种指标对混凝土强度和对钢筋的腐蚀性影响都非常大。因而,对该种河砂专门供应。对砂进行上述三种指标值的测定,严格按高标准控制砂中云母含量、硫化物含量、含泥量及压碎指标值,并且,此种混凝土对细度模数也有较高要求,细度模数选用2.6~3.1的中砂为宜。不宜选用砂岩类山砂、机制砂、海砂,此类砂对膨胀混凝土的膨胀率影响非常大。

1.3 粗骨料。

骨料的品质对高性能微膨胀混凝土有很大的影响,主要体现在骨料――砂浆界面粘结强度、骨料弹性模量和骨料的强度。在考虑该种混凝土的可泵性的同时,要考虑混凝土的早强性和后期强度。卵石混凝土的可泵性很好,但混凝土中砂浆和卵石的界面粘结力较差,强度较低,造成水泥用量过高。碎石混凝土的可泵性较差,但早期和后期强度较高。有的碎石采用含硅质的岩石,在此类岩石中由于SiO2对混凝土影响很大,所在设计中全面考虑影 响因素,一般不用此类碎石。为提高混凝土和易性可以用碎石和卵石双掺的方法,也可以增大砂率用碎石单独作粗骨料。使用碎石需经过二次破碎,使碎石基本无棱角,并减少针片状颗粒的含量。碎石和卵石的粒径都控制在小于30mm。粗骨料中的含泥量以及本身的强度和骨料的弹性模量,在配制时,需引起重视。

1.4 掺合料。

粉煤灰来源广泛,价格便宜,可减少环境污染,是值得推广的外掺料。粉煤灰主要的四种化学成分,掺入混凝土内在水泥水化过程中,能与分解出来的Ca(OH)2起化学反应,生成具有胶凝性的水化产物。这些水化产物,能在空气中硬化,逐渐具有水硬性,增强了混凝土的密实性。因此,粉煤灰能取代部份水泥,从而节约水泥,降低水化热,使混凝土升温降低15%~35%。二次水化反应主要取决于粉煤灰中的硅酸盐和铝硅酸盐微细颗粒的含量,同时也取决于粉煤灰的细度。细度越大,水化触及面越大,二次水化反应越充分,且“二次反应”产生的凝胶封堵了毛细管路,增强了密实性,提高了混凝土的耐久性。这种“二次水化反应”只有Ⅰ级粉煤灰和磨细粉煤灰可以彻底完成。所以掺加Ⅰ级或磨细粉煤 灰是很有必要的。

但使用粉煤灰时,还应严格控制SO3的含量。因硫酸盐与硅酸盐发生反应后,生成钙矾石。如SO3含量过大,生成的钙矾石过多,则会引起混凝土的体积的不稳定性,降低混凝土耐久性。这种现象在学术上称为“水泥杆菌”。所以,配制高性能微膨胀混凝土时,粉煤灰中SO3含量应控制在0.5%~1.5%左右。并且在配制高等级高性能的微膨胀混凝土时,掺用粉煤灰,它可以起到减少水泥用量的作用,也可以起到增加混凝土的和易性、可泵性、提高混凝土的强度的作用,并可降低混凝土中的水化热,提高新拌及硬化混凝土性能。配制C50及以上的高性能微膨胀混凝土必须掺用外掺料,并应掺加Ⅰ级或磨细粉煤灰。如掺Ⅱ级及以下的粉煤灰,会造成强度降低,混凝土干缩增大。

1.5 外加剂。

高效减水剂能使水泥起到分散作用,以改善混凝土的和易性并相对地释放出一部分水,在维持W/C不变时,可以减少立方用水量,减少由于多余的水分蒸发而留下的毛细孔体积,且孔径变细,结构致密,同时水化使生成物分布均匀,这对于减少混凝土的收缩,提高混凝土的密实性是很有好处的。W/C不变,立方水泥用量可以减少,从而对于减少水化热、降低混凝土温度也起到很好的效果。有的减水剂掺有缓凝成份,能抑制水泥初期水化作用,这就有可能使温升速度缓慢,可改善混凝土的密实性、粘度等。所以,高效减水剂是配制高性能混凝土的主要成份。国内这种减水剂主要是萘系高效减水剂及密胺树脂类高效水剂。由于钢管混凝土在整个灌注期间,混凝土是蠕动性的,需一定的运输和泵送时间,且钢管混凝土在灌注后无法排出气泡及养护。所以对外加剂的选择尤为重要,因外加剂掺在不同膨胀剂的混凝土中产生的效果不同,选择外加剂一定要多次试验后方可使用。根据试验,缓凝型减水剂会降低混凝土膨胀率,所以,掺加缓凝型减水剂时应多次试验,认为混凝土膨胀率合适才可使用。配制高性能微膨胀混凝土选用的高效减水剂应具有缓凝作用或是高效减水剂和缓凝剂搭配使用,且是非引气型、低气泡的减水剂。此类高效减水剂的质量应符合现行国家标准《混凝土外加剂》规定。

1.6 膨胀剂。

混凝土中掺加膨胀剂,在水泥硬化过程中,形成大量的体积增大的结晶体――水化硫铝酸钙C3A・3CaSO4・32H2O(又名钙矾石)。它能产生一定的膨胀能,在有钢管约束条件下,在结构中建立0.2~0.3MPa预应力,可抵消混凝土在硬化过程中产生的收缩应力,从而能使混凝土中的孔隙减小,毛细孔径减小,提高混凝土的密实性,混凝土的抗压强度和轴心抗压强度也成倍地增长,这时膨胀能转变为自应力,使混凝土处于受压状态,从而提高抗裂能力。所以微膨胀混凝土在有应力情况下,自身的强度远远大于设计值,其强度保证率大于97%。选择膨胀剂一定要多试验几个品种,膨胀剂应对混凝土后期强度及质量无损害,与所用水泥适应性好。在我国主要是使用U型膨胀剂、复合膨胀剂及明矾石膨胀剂。

2. 控制指标

2.1 试配强度。

混凝土的施工配制强度应高于设计要求的标准值,以满足强度保证率的需要。标准差的确定,可按一般高性能混凝土的设计方法进行配制强度的计算,不需要计算后按高一级强度等级的强度值作为施工配制强度,主要一点在于进行施工配合比的验证工作。该种微膨胀混凝土设计强度一般为C40~C50,根据以往的经验和高性能混凝土的设计原则,应控制水灰比,把水灰比确定为定值。由于W/C对钢管混凝土的膨胀系数影响很大,W/C小,膨胀时间延长,不利于钢管受力;W/C大,则膨胀发挥较早,强度下降,对提高结构受力不利。所以在设计过程中一定要根据多次试验,控制好W/C。然后,进行各种材料用量的调整。

2.2 砂率的确定。

高性能混凝土的设计中,砂率是根据测得砂、石混合最小空隙率(a=(表观密度-容重)/表观密度)计算而来,该计算值为最佳砂率。在配制高等级高性能混凝土过程中尤其重要。但钢管混凝土的灌注过程和一般高等级混凝土的灌注过程是不一样的,该种混凝土是采用在钢管中顶升灌注,在顶升的过程中,混凝土要有极好的和易性。粗骨料在顶升过程中不会由于自身的重力作用而下落,否则会造成顶升压力过大而失败。在设计混凝土配合比过程中混凝土中碎石应稍微呈悬浮状态,不能下沉。所以该种混凝土的砂率可提高一些。由于提高了砂率,会造成混凝土的水泥用量比原来要大些,膨胀率会小些。但只要能保证灌注的钢管混凝土后期为无应力或微应力即可。以上说明增大砂率会造成强度下降,膨胀值降低。但Sp为40%的混凝土和易性比Sp为35%的混凝土要好,且混凝土中碎石为悬浮状。

2.3 凝结时间的确定。

钢管混凝土一般都采用顶升灌注法,在顶升的过程中,不允许混凝土初凝,所以在设计中就应考虑掺加高效减水剂或缓凝剂,以延缓混凝土的凝结时间。但掺加缓凝剂会减少混凝土的膨胀率,这样就产生了相互矛盾。为解决此问题,在膨胀值不符合设计要求的情况下,可掺加矾土水泥或石膏,或在现场进行模拟试验,在什么膨胀条件下,可保证钢管混凝土的饱和度,也可在允许的范围内,增大高效减水剂的掺量,使缓凝延长。但掺用范围应严格控制试验,掺量过大,会引起泌水及和易性降低。这样几个方面同时进行多次试验,就可解决缓凝条件下,混凝土的膨胀率问题。 2.4 膨胀剂掺量。

对膨胀混凝土来说,膨胀剂的掺量,直接关系到混凝土膨胀率的问题。在保持坍落度、水灰比、减水剂掺量不变的情况下,随着内掺U型膨胀剂的增加,混凝土的限制膨胀率增加,混凝土强度下降,而坍落度损失增大,所以根据工程设计要求,经过试验,选择合适的膨胀剂掺量是极其重要的。

2.5 膨胀值的确定。

钢管混凝土一般都是在限制条件下膨胀,膨胀值小,则钢管中混凝土会与钢筋间产生空隙,造成钢管与混凝土无法连成整体,受力降低;而膨胀过大,则在钢管内部形成很大的自应力,就会破坏混凝土内部结构,钢管本身一直在横向自应力的受力情况下,对本身结构受力有很大影响。因此,膨胀混凝土应有一个宜于控制的较大的膨胀值范围。根据我们施工实践认为钢管混凝土设计为无应力或微应力时,膨胀混凝土限制膨胀率28天控制在(2~6)×10-4的膨胀值是合理的。经现场超声波检测达到饱满、密实、无空隙,经测试其动静载试验都达到设计要求。所以根据成功的事例证明,控制无应力或微应力钢管桥中膨胀混凝土的膨胀值时。可考虑较大范围,这样易于控制,不至于因膨胀值微小的变化,造成构件结构受力的破坏。

3. 结论

钢管和混凝土二种材料相互影响,使其强度、塑性和韧性明显改善,通过将高强、高性能混凝土灌入钢管、形成钢管高性能混凝土。在各种复杂应力的作用下,钢管具有很大的抗剪和抗扭能力,从而有效防止了砼的脆性破坏,使其综合性能和经济效果得以充分发挥。

由于膨胀混凝土的特殊性,在拌制混凝土的过程中,材料计量很小的误差,就会造成混凝土强度波动,及膨胀率增大或减小,引起结构受力降低、及钢管混凝土饱和度下降等质量事故。微膨胀混凝土的设计失败造成的钢管混凝土饱和度很差,引起结构受力下降,当然还有钢管本身结构缺陷造成的受力下降。设计工作是非常重要的环节,但也不可忽视施工方面的因素。对原材料配合比,施工方案等各环节严格掌握,认真操作,优化设计,严格施工控制,是钢管微膨胀混凝土应用中必不可少的重要环节。

参考文献

[1] 《膨胀混凝土》,吴中伟、张鸿直著.中国铁道出版社,1991年.

[2] 《近代混凝土技术》许溶烈主编、陕西科学技术出版社,1998.10.

[3] “高强混凝土的研究及应用” 谢剑学 甘肃工业大学硕士研究生毕业论文,2000.

上一篇:消防设施管理在建筑中的问题与对策 下一篇:压密注浆法处治路面裂缝的施工技术