浅议SDH与光纤通信

时间:2022-09-14 10:37:22

浅议SDH与光纤通信

摘要:随着现代通信技术的迅猛发展,光纤通信的速率已提高到了Gbps数量级,光纤骨干网的传输体制正在从PDH向SDH过渡。针对新的SDH技术体制,本文首先介绍了准同步数字复接体系-PDH,阐述了PDH的缺点;着重介绍了同步数字复接体系-SDH的基本概念和主要技术,包括SDH的特点、STM-N的帧结构和复接等级、PDH到SDH的复用映射等;最后是对光纤通信的展望。

主题词:光纤通信;PDH;SDH

中图分类号:TN914文献标识码:A文章编号:1007-9599 (2011) 24-0000-02

Study on SDH and Optical Fiber Communication

Li Guangming

(Network Management Center of Xi'an Politics Institute,Xi'an710068,China)

Abstract:With the rapid development of modern communications technology,optical fiber communication rate has increased to a Gbps order of magnitude,the fiber optic backbone transmission system is from PDH to SDH transition.New SDH technology system,this paper first introduces the quasi-synchronous digital multiplex system-PDH described PDH disadvantage;focuses on the basic concepts and technology of synchronous digital multiplex system-SDH,including the characteristics of SDH,STM-N frame structure and the rating of multiplexing,PDH to SDH multiplexing mapping;outlook for optical fiber communication.

Keywords:Optical fiber communications;PDH;SDH

一、引言

光纤通信在现代通信网中有着广泛应用,是现代通信的重要支柱。光纤通信是以光波为载波、以光导纤维为传输媒介的有线通信,具有传输容量大(或频带宽)、无中继传输距离长、适于数字传输等特点,因而广泛应用于市话网局间中继、长途干线传输、跨洋海底通信等场合,后又发展应用于用户接入网、有线电视(CATV)、计算机区域网、农村电话网等等。可以说在当今的有线通信中,干线通信、宽带通信都是采用光纤通信。

随着现代通信技术的高速发展,光纤通信的速率已从Mbps、几十Mbps、百Mbps提高到Gbps、10Gbps甚至更高速率,光纤通信的应用也从早期的点对点通信,发展成为今天庞大的光纤传输网。在此情况下,传统的准同步时分数字复接体系-PDH的缺点愈来愈突出,不利于现代通信网的进一步发展。为此,国际电信联盟ITU-T(CCITT)于近几年制定了同步数字复接体系-SDH。SDH是关于高速数字传输的一系列标准和建议,其对于高速数字传输及现代通信网的进一步发展,具有重要的指导和规范作用。

二、准同步数字复接体系―PDH

(一)PDH复接等级。光纤通信最早是应用于多路电话的数字传输,并一直继承演进至今。话音信号经过抽样、量化编码和脉冲调制(PCM),变换成速率为64Kbps的数字信号。因而,64Kbps是时分数字复用的基础速率,也称为PDH零次群。另外,电话的多路传输除了要传输数字化的话音信号之外,还必须传送电话交换(接续)的控制信号、线路状态信号等。所以,将一定数目的64Kbps话音信号、相应的信令信号和帧同步、信道服务信号等,以帧的形式复接成群路信号,就构成了PDH一次群,也称为基群。

由于历史的原因,PDH复接等级形成了以1544Kbps为基群速率和以2048Kbps为基群速率的两大系列,而两大系列在往高群次复接时又产生了分支。

我国采用以2048Kbps为基群速率的数字复接等级,该基群也称30/32路基群,即30路64Kbps话音信号,2路64Kbps非话信号。2路非话信号由30路电话的信令比特和帧同步、复帧同步、信道服务等开销比特组成,30/32路基群有严格的帧结构,从基群依次按4倍等级往上复接。

在PDH复接系列中,从零次群(64Kbps)到基群(2048Kbps)是同步复接,从基群往高次群采用准同步复接。所谓同步是指多路数字信号之间,其时钟频率和相位有完全确定的关系,或者说信号之间的时钟频率和相位关系确定。当支路信号与复接单元时钟同步时,即是同步复接。如果支路信号与复接时钟的标称速率相同,而实际上有一个很小的容差,这种复接一般采用准同步复接。

PDH基群往高次群采用准同步复接,正是考虑支路信号来自于不同的设备,各自有不同的时钟源,信号的实际速率与标称速率会有一定的偏差,与复接单元的复接频率不完全一致,不能采用同步复接。PDH准同步复接采用正码速调整技术,将各支路码流调整到一个统一的较高速率,然后进行同步复接。

在PDH高次群信号中,除了低次群支路信号之外,还包括各支路码速调整比特和高次群帧同步、高次群信道服务等开销比特。所以,高次群的速率稍大于支路速率的四倍。CCITT关于这种准同步复接的一系列建议和标准,称之为准同步数字复接系列―PDH(Plesiochronous Digital Hierarchy)。

(二)PDH的缺点。随着光纤通信速率的迅速提高和应用的网络化,PDH数字复接体系的缺点愈来愈突出,不利于现代通信网的进一步发展,其主要表现在:

(1)PDH存在着以1.544Mbps为基群速率和以2.048Mbps为基群速率的两大复接系列;高次群复接没有统一的帧结构;不同系列、不同厂家的设备难以直接互通。

(2)PDH复接首先将各支路信号通过正码调整,调到一个较高的速率,然后以比特间插的方式进行复接,破坏了字节的完整性;低次群信息在高次群帧结构中没有确定的位置。所以,要在传输链路的中间节点上下低速支路,必须用同厂家的复分接设备逐级分接和逐级复接,上下支路困难。

(3)PDH网络接口的电接口是标准的,光接口没有标准化,不同厂家设备在光链路上不能互通。

(4)PDH帧中开销比特较少,不能满足现代通信网运行、管理和维护(OAM)的通信需要。

为了克服这些缺点,适应现代通信的高速数字传输和通信的网络化,国际电联ITU-T(CCITT)于近几年制定了“同步数字复接系列―SDH”(Synchronous Digital Hierarchy)系列标准,使1.5Mbps以上的数字复接标准化,也使高速率数字传输更加符合现代通信网的要求。

三、同步数字复接体系―SDH

(一)SDH的定义及特点。SDH是有关通过物理(主要是光)的传输网路,传送适配的净荷(Payload)的标准化数字传送结构的一个系列集。通俗地讲,SDH就是关于高速率数字传输的一系列标准,包括标准化的帧结构,标准化的网络单元,标准化OAM(运营、管理、维护)开销字段,标准化的电、光接口等。

(二)SDH的帧结构及复用等级。STM-N的帧是一个9行270×N列字节的矩阵形结构,传送一帧的时间(周期)为125us,帧频8KHz,与话音信号数字化的抽样频率相同。帧中信号的传输顺序是:从矩阵的左上角开始,按照从左至右从上至下逐字节进行传送。

(三)SDH的开销。SDH的一个重要特点就是它有标准化的贯穿全网的运营、管理、维护(OAM)功能,SDH帧中丰富的开销比特就是为实现这一功能而设置的。

(四)SDH的指针。在从PDH到SDH的映射复用过程中,有一种适配速率和指示相位的重要技术―指针技术。适配速率就是对信号速率进行校正,将其调整为规定的码速率以便同步复接。指示相位就是指示在本等级帧中信息净荷的起点。应用指针技术是SDH的最大特点,也是SDH能简单方便地上下支路信号的关键所在。

SDH的指针分为TU指针和AU指针两种。指针的原理就是用指针字节中的特定比特,动态指示低阶信号的正/零/负码速调整操作,指示在本级帧中信息净荷的起点。

另外,指针的作用还包括:当网络处于同步状态时,指针用于同步信号之间的相位校准;当网络失去同步时,指针用于频率和相位校准;当网络处于异步工作时,指针用作频率的跟踪校准。指针还可用来容纳网络中的相位抖动和漂移。

(五)SDH传输系统的应用。SDH系统的主要特点是:组网能力强,系统运营、管理和维护方便,适用于大通信量的场合。所以,其主要应用于公网或骨干网的新建项目和对原有光纤传输网的升级改造。在总装北京和各基地的通信专网中,目前普遍应用的是点对点PDH光纤传输系统,并将在今后一个时期内仍然以PDH为主。但从发展的角度看,在有些大通信量场合,或者组网要求高、中间要上下支路的场合,应考虑采用SDH光纤传输系统。

四、光纤通信的展望

(一)光纤通信的应用趋势。光纤通信除了继续在通信网中普及之外,新的应用趋势有二:一是光纤向用户延伸。即所谓的光纤到路边(FTTC)、光纤到小区(FTTZ)、光纤到大楼(FTTB)、光纤到家庭(FTTH),以逐步实现用户接入宽带化。二是,利用光波分复用(WDM)、光纤放大器、SDH等光纤通信新技术,对现有传输网进行升级改造,大幅提高传输容量,优化网络结构,强化网络功能。

(二)光纤通信的新技术研究。光纤通信的理论容量应在20Tbps以上,目前应用系统达到Gbps数量级,进一步提高光纤传输容量还有很大空间。直接提高调制速率到10Gbps以上时,受到半导体电子线路固有特性的限制而遇到了新问题。所以,在提高容量方面,有望较快投入应用的是光波分复用(WDM)和相干光通信,即在同一光纤上开辟多个光信道,成倍提高光纤的通信容量。

在延长无中继传输距离方面:首先是参铒光纤信号放大器的研制取得了重大突破,其对光信号直接放大,放大增益达30dB,并由此带动了其它方面研究工作。其次是相干光通信,即利用相干接收原理,使接收机的灵敏度提高约20dB。三是,光纤新材料的理论研究有了新的发现;目前广泛应用的石英光纤的长波长传输衰减约为0.2dB/Km,接近理论值;而用氟化物制作光纤,理论上证明其对2-3um超长波长光波的衰减为0.0001-0.001dB/Km,也就是说氟化物光纤的无中继传输距离可达成千上万公里。

五、结束语

光纤通信是现代通信的重要手段,在现代通信网中有着广泛的应用,是现代通信的重要支柱。光纤通信的特点是通信容量大、无中继传输距离长。SDH是关于高速数字传输的一系列标准或技术规范,主要应用于高速率光纤传输;SDH传输系统的特点是:适合于大容量、链状或环状网应用场合(网络功能强),系统运营、管理和维护(OAM)方便;SDH对于现有的PDH传输具有良好的兼容性。SDH系列标准对于高速数字传输具有重要的指导和规范作用,促进现代通信网的进一步发展;同时,SDH也是一个十分复杂的技术体系。

光纤通信的应用有两个新趋势:一是光纤向用户延伸,二是利用光纤通信新技术对现有的传输网进行升级改造。随着光纤通信新技术研究的进展和应用,光纤通信将在现代社会中发挥更大的作用。

参考文献:

[1]赵梓森.光纤通信工程[M].人民邮电出版社,1995,5

[2]邓忠礼,赵晖.光同步数字传输系统测试[M].人民邮电出版社,1998,5

[3]张煦.光纤通信原理[M].上海交通大学出版社,1985,1

[4]杨同友,刘炎卿.光纤通信系统测试[M].人民邮电出版社,1993,1

上一篇:关于数据挖掘语言应用现状的分析 下一篇:Web服务交通建设工程管理信息系统的关键问题