抗震性结构设计论文

时间:2022-09-14 12:36:57

抗震性结构设计论文

1结构抗震设计

1.1结构抗震性能目标本工程存在扭转偏大、楼板不连续、尺寸突变、竖向构件不连续、承载力突变等多项不规则,属特殊类型高层建筑。结构设计确定的抗震性能目标见表1。由表1可知,本工程采用的性能目标较高,介于《高层建筑混凝土结构技术规程》(JGJ3—2010)[2](简称高规)定义的A,B级之间,主要原因有两个方面:一方面是经对比分析,与B级目标相比较,性能目标提高后仅核心筒部分需要增加较少工程造价,对于总体造价而言,增加比例很小的造价即可满足性能目标要求;另一方面是考虑到结构悬挑比较大,且是乙类建筑,特意提高其性能目标。本工程于2012年6月通过广东省超限高层建筑工程抗震设防专项审查。

1.2结构受力特点及分析地震作用下整个结构有比较复杂的反应,主要有以下几个方面:一是水平和竖向震动耦合;二是悬挑端有比较大的竖向震动反应,导致核心筒远离悬挑端一侧混凝土承受拉力;三是水平地震和竖向地震引起的整体结构扭转作用导致结构筒体有比较大的扭转效应。(1)大震作用下悬挑端位移分析大震作用下悬挑端的位移见表2。由表2可知,X向地震作用下,悬挑远端Z向位移比较显著;Y向地震作用下,因结构扭转造成悬挑远端Y向水平位移比较显著。X向地震作用下,悬挑远端Z向位移由框筒部分的剪弯变形(包含绕Y轴的转动变形)及悬挑部分自身的竖向弯曲变形组成;Y向地震作用下,悬挑远端Y向位移由框筒部分绕Z轴的转动变形和悬挑部分自身的水平弯曲变形组成。(2)小震Y向作用下核心筒的总力矩分析图6给出了核心筒外筒墙、柱编号,表3给出了各墙体在Y向小震作用下的剪力及其相对于核心筒形心点O的力臂。由表3可知,核心筒外筒墙体对核心筒形心点O的力矩之和为979014kN•m。Y向地震作用为61147kN,等效力臂为979014/61147=16.01m。此巨大力矩将通过内藏钢骨的核心筒传递至地下室的核心筒,再传至基础。(3)核心筒外筒墙体轴向内力分析表4给出了小震、大震作用下核心筒外筒墙体轴向内力,其中小震作用考虑恒荷载和活荷载及风荷载,大震作用仅考虑恒荷载和活荷载,活荷载均按最不利布置(仅悬挑部分有活荷载)。从表4可看出,小震作用下,墙体Q2,Q5均受压,墙体Q3受拉,墙体Q1总体是以受压为主,但其与墙体Q3相连端受拉;在大震作用下,墙体Q1,Q3受拉,墙体Q2在4层以上受压、在4层及其以下受拉,墙体Q5在5层以上受压、在5层及其以下受拉。(4)核心筒外筒墙体剪压比分析图7给出大震作用下核心筒外筒墙体的剪压比曲线,其中剪力按照墙体中混凝土和型钢所能承担的比例分配,此处用于计算剪压比的剪力为混凝土部分承担的剪力。由图7可见,大震作用下核心筒外筒墙体的剪压比均小于限值0.18,满足设定抗震性能目标的要求。图7核心筒外筒墙体剪压比曲线(5)悬挑部分竖向地震作用及其收敛分析通过SATWE和ETABS软件,采用振型分解反应谱法与弹性时程分析法对比分析了竖向地震作用下结构的反应,得到了竖向地震作用下悬挑部分的竖向地震作用系数(即悬挑部分所承受的总竖向地震力与悬挑部分的重力荷载代表值的比值)。悬挑部分恒荷载总重GDL=58269kN,活荷载总重GLL=7822kN,悬挑部分结构重力荷载代表值GE=GDL+0.5GLL=62180kN,故小震作用下悬挑部分的竖向地震作用系数α小震=2641kN(小震竖向地震力)×1.25(小震放大倍数)/62180kN=0.053,在大震作用下竖向地震作用系数为α大震=16145kN(大震竖向地震力)/62180kN=0.260。高规中并未规定7度(0.10g)时的竖向地震作用系数,但参照高规插值,可以得到7度(0.10g)时的竖向地震作用系数为0.05,本文如不考虑1.25放大系数,其竖向地震作用系数仅为0.0424,小于0.05,故在采用振型分解反应谱法计算竖向地震作用时应注意其所计算的竖向地震作用是否达到高规规定值。Z向地震时程分析所得的竖向剪力平均值与弹性反应谱分析所得的竖向剪力之比为2987/3389=0.88。尽管不同位置的构件内力随竖向振型参与系数的变化是不一致的,但是当振型参与系数在15%~90%之间时,其竖向地震引起的构件内力增长非常缓慢,此与高层结构有较大不同。

1.3结构性能化设计措施(1)为提高剪力墙连梁的延性,在连梁中配置型钢,并加强其腰筋及箍筋配置(配筋率不小于0.4%且不小于计算配筋)。(2)在核心筒剪力墙中配置型钢,一是为了承担部分剪力及弯矩;二是与墙体竖向钢筋共同承担拉力。(3)通过核心筒的连梁来实现结构耗能,虽然连梁中设置了型钢,但墙体中也设置了型钢,相对于墙肢而言,连梁截面内力远小于墙体截面,所以地震作用时是连梁首先发生弯曲破坏,起耗能作用。虽然结构承载力已按较高的性能目标实现,但为使结构具有较好的塑性变形能力,结构仍然按高延性设计,核心筒及框架柱抗震等级为一级,钢构件抗震等级为二级。

2结构计算分析

2.1振动模态采用SATWE,ETABS软件进行多遇地震作用下的计算对比分析。ETABS软件计算得到的结构的振型图如图8所示(两种软件计算得到的振型一致),由图8可以看出,悬挑部分有较大的振动反应。

2.2整体分析结果对比由SATWE,ETABS软件计算的结构总体指标对比见表5。由表5可知,两个软件计算的结果比较接近,相符度较好。SATWE软件计算的整体稳定性验算指标刚重比X向为117.86,Y向为46.79,均大于规范限值2.7(不考虑二阶效应的限值);ETABS软件计算的整体稳定性验算指标刚重比X向为106,Y向为46.79,均大于规范限值1.4(稳定限值)和2.7(不考虑二阶效应的限值)。

2.3施工卸载模拟计算悬挑桁架部分采用满堂脚手架施工,脚手架支承于地下室顶板上,地下室顶板考虑60kN/m2的施工荷载。采用分段吊装的施工方案,桁架在现场焊接成型,采用塔吊和汽车吊相结合的方法完成吊装(图9)。全部钢结构构件安装完毕后再进行脚手架卸载,卸载顺序为由远端向根部逐渐延伸,在卸载过程中应对钢结构变形及位移进行现场测量。卸载完毕后,开始安装钢筋桁架,浇筑楼板,砌筑固定隔墙,然后封闭楼板后浇带。图9施工方案示意图本工程进行了施工卸载模拟分析,分四步拆脚手架,首先拆第四节下对应的脚手架,接着拆第三节、第二节、第一节下对应的脚手架。卸载过程远端位移模拟显示悬挑远端满足《钢结构设计规范》(GB50017—2003)[3](简称钢规)要求,虽卸载过程与使用状态下的结构支撑条件和荷载作用条件不同,但卸载过程中构件的内力符号没有发生变化,且其应力比均小于正常使用状态下的应力比。

2.4防连续倒塌分析与设计对于防连续倒塌的分析,参考高规采用了两种方法:一是拆除构件法;二是施加表面荷载法。(1)KZ1是受荷最大、最为重要的柱,所以对其按拆除构件法验证是否满足防连续倒塌的要求。计算结果表明,与所拆除构件直接相连的构件最大应力比为[(0.69/1.35)/1.25]×2=0.818,斜拉腹杆最大应力比为(1.13/1.35)/1.25=0.67,其余各构件应力比均小于1。(2)对于桁架的主要弦杆和腹杆,采用在构件表面附加80kN/m2侧向荷载的方法进行验证分析,分三步进行:第一步是按未加侧向荷载进行计算;第二步是将构件从整体结构中取出来,施加侧向荷载进行内力计算;第三步是叠加前两步内力。计算结果见表6,由表6可知,桁架一的主要杆件应力比均小于1.0。

2.5人群荷载下楼盖振动舒适度验算由于楼盖结构的跨度比较大,故对其进行了舒适度研究,采用MIDAS/Gen进行楼盖振动舒适度分析。楼盖振动舒适度分析考虑两种人群荷载工况:工况一为21人同频率、同相位行走;工况二为60人同频率、不同相位行走的。计算结果表明,楼盖最大振动加速度为0.0452m/s2,满足规范限值0.05m/s2要求。

2.6楼盖风振时程分析基于风洞试验实测数据,结合风速时程样本,采用MIDAS/Gen软件模拟结构风振[5],本工程中只考虑顺风向风速的影响,采用了Davenport脉动风速谱,参考深圳市气象局近年来的风速统计资料,设定参考风速,以MonteCarlo法为基础采用谐波叠加法,设定关心的频率始值和终值,随机产生风速时程曲线。局部风振时程荷载按点荷载直接施加于模型相应测点处。分析结果表明,不同风振时程样本引起的楼盖最大加速度差别较大,这主要是由于随机生成的风振时程的自身差异所导致的;基于本文的时域分析方法及风振报告提供的频率方法(其中楼盖振动最大加速度为0.221m/s2)计算出的楼盖风振效应均很明显。针对本工程而言,风荷载引起的竖向振动是设计的控制因素。

3关键节点设计及有限元分析

悬挑桁架从混凝土核心筒及外框柱伸出,第7层E,B点(图3)处节点交汇杆件达11根,节点受力比较复杂。悬挑桁架下弦杆根部弯矩非常大,尽管钢材已采用Q420GJC,但板厚仍超过100mm,基于此提出了解决桁架根部局部弯矩过大的新型节点,见图10。此节点通过对工字形截面翼缘板加下挂板的方式,变相增加了翼缘板的宽度。此种做法一是可以减小板厚,降低焊接难度;二是相对于箱形截面其便于焊接和混凝土浇捣。节点分析拟考虑两种荷载工况:一是大震作用工况;二是构件屈服工况,即加载至某构件(根据大震的分析结果,选取承载能力利用率最高的构件)发生屈服。选取桁架一下弦杆梁柱节点及桁架二下弦杆梁墙节点进行节点分析。采用MIDAS/FEA[7]进行分析。大震作用下节点应力云图如图11所示,结果表明,节点区几乎所有的钢构件均保持在弹性状态,混凝土受拉及受压均保持在弹性状态,节点区构件满足承载能力极限状态的要求。构件屈服工况下节点应力云图如图12所示,结果表明,应力最大钢构件中和轴以下全部发生屈服时,节点核心区内板件仍保持在弹性状态,节点板屈服区域仅分布在以屈服构件相连的局部区域,没有向节点板核心区扩展,满足“强节点、弱构件”的控制要求。

4结语

本项目单边大悬挑,其悬挑长度远远超常规结构,结构复杂,其设计具有比较大的挑战性。针对其特殊复杂的结构体系,采取了一系列特殊结构分析,提出了解决局部弯矩的新型节点。

作者:景守军 唐增洪秦帆胡鸣冯育达莫德明单位:深圳机械院建筑设计有限公司

上一篇:主楼超限结构设计论文 下一篇:梁式转换层结构设计论文