钛合金深冷及冷热循环处理研究

时间:2022-09-14 04:46:09

钛合金深冷及冷热循环处理研究

摘要:通过模拟空间特殊环境,对纯钛、TA7,TC4和TC10钛合金在深冷处理及冷热循环处理环境下的显微组织及力学性能进行了研究;并进行了维氏硬度观察及金相组织、XRD,扫描电镜分析.结果表明:深冷及冷热循环处理可以改善钛合金的显微组织,也可以提高其力学性能,同时冷热循环处理可以引起纯钛孪晶增生的现象.

关键词:钛合金;深冷处理;冷热循环处理;XRD;显微组织

中图分类号:TB31 文献标识码:A

与其它传统金属合金相比,钛合金因密度小、比强度高、耐高温、耐蚀、无磁、可焊等优异的综合性能在航空领域得到广泛应用,如发动机的叶片、机匣、机身的框梁等

1实验材料与方法

实验用材料购自东莞市鸿钛钛合金金属有限公司生产的轧制态纯钛、TA7,TC4和TC10钛合金,其化学成分如表1所示.本文通过模拟空间特殊环境,来研究深冷处理和冷热循环处理对纯钛、钛合金的微观组织及性能的影响.根据文献所给的信息:钛及钛合金材质的航天装备在空间特殊环境下使用时,其向阳面的温度大概在400 K左右,所以冷热循环热处理中的热处理设定温度为400 K;而在背阳面时温度低至液氮温度,根据文献资料和前期研究基础,将深冷处理温度定为液氮温度(约80 K). 本文采用的深冷处理方法为急冷急热法,即将试样从室温直接浸入液氮中保温一段时间后取出,在空气中自然回复到室温.而冷热循环处理方法即将试样直接浸入液氮中保温12 h后取出,在空气中回复到室温,紧接着将试样置于温度为400 K的热处理箱中保温12 h后取出再浸入液氮中,依次循环.两种工艺路径的处理时间为1~60 d,期间取10个时间点取样,分别为1 d,3 d,5 d,7 d,11 d,18 d,30 d,40 d,50 d,60 d(d代表Day),然后进行组织和性能的对比分析.为了消除试样内应力和组织性能的均匀化,在实验前对试样进行了去应力退火处理工艺,具体参数见表2.并采用401 MVA型维氏显微硬度仪、Y500型Xray衍射仪、金相仪、扫描电镜对深冷处理及冷热循环处理前后试样的力学性能和显微组织进行检测并分析.

2结果与分析

2.1显微硬度

对未处理和深冷及冷热循环处理1 d,3 d,5 d,7 d,11 d,18 d,30 d,40 d,50 d,60 d的4种钛合金试样分别进行显微硬度测量(HV0.2),多次测量取平均值(10~15个点).表3 给出了TA7,纯钛,TC10和TC4钛合金经长时间深冷处理及冷热循环处理前后的显微硬度最大增长百分比.实验结果表明:深冷处理及冷热循环处理可以提高某些钛合金的显微硬度,如纯钛、TA7;而对α+β系钛合金的显微硬度影响不明显,如TC4,TC10.但不是深冷及冷热循环时间越长越好,而是存在一个最佳的深冷及冷热循环时间.对纯钛,其最佳冷热循环时间为3 d,硬度从18.92上升到21.14,提高了11.7%;对TA7,其最佳深冷时间为11 d,显微硬度从24.59增加到26.67,提高了8.45%.而TC4和TC10的硬度值最大变化不超过5%,可以认为在实验误差范围之内而忽略不计.

2.2微观组织

为了探讨深冷处理及冷热循环处理对钛合金显微硬度的作用机理,对显微硬度变化较为明显的试样和未经处理的试样进行显微组织观察,并进行比较与分析.图1(a,b)为纯钛经冷热循环处理前后的显微组织,其中(a)为原始样的金相组织,(b)为冷热循环处理3 d的金相组织,在冷热循环处理之前所有试样均经过退火处理,晶粒内部有少许孪晶,并残留了部分残余应力(如图1(a)所示),而经冷热循环处理3 d后,孪晶数量明显增多(如图1(b)所示).同时,每一次冷热循环都会产生变形而使试样原有的残余应力降低.Gu等

2.3SEM分析

为了探讨冷热循环处理对纯钛显微硬度提高的作用机理,选择显微硬度变化较为明显的冷热循环处理3 d的试样和未经过处理的试样进行扫描电镜分析.图3给出了纯钛经冷热循环处理3 d前后试样的扫描电镜和能谱照片.图3(a)为纯钛原始样的形貌,晶界与孪晶上均匀分布着白色条状物,如黑色圆圈位置所示;图3(b)为纯钛冷热循环处理3 d后的形貌,同样,晶界与孪晶上弥散分布着白色颗粒,经过能谱分析,晶界及孪晶上的白色物质为TiN,而且经冷热循环处理后的试样N的含量明显增多.由此可知,纯钛经冷热循环处理之后,N在孪晶和晶界处发生了聚集现象;同时TiN的形貌也发生了明显变化,由原来的条状转变成了颗粒状.这可能是导致纯钛显微硬度提高的又一原因.

(a) 纯钛原始样SEM

3结论

本文对轧制态纯钛、TA7,TC10和TC4钛合金的深冷及冷热循环处理进行了研究和讨论,结论如下:

1)合适的冷热循环处理时间可以提高纯钛的显微硬度值.其最佳冷热循环处理时间为3 d,试样显微硬度值提高11.7%,其显微硬度的升高是孪晶数量的增多、晶界及孪晶位置氮化物形貌及N含量增多等综合作用的结果.

2)选择合适的深冷处理时间可以提高TA7的硬度值.其最佳深冷时间为11 d,显微硬度从24.59提高到26.67,涨幅8.45%.其显微硬度提高的作用机理主要表现在深冷处理后晶粒的长大、残余应力的消除及晶粒转向的偏转.

3)钛合金在深冷处理过程中会有形成亚晶结构的现象,从而使晶粒细化,形成细晶强化,提高钛合金材料的显微硬度.

4)钛合金TA7经深冷处理11 d后有些晶粒发生了向(002)晶面取向的偏转;纯钛经冷热循环处理3 d后某些晶粒发生了向(101)晶面取向的偏转.

参考文献

[1]赵永庆,奚正平,曲横磊.我国航空用钛合金材料研究现状\[J\].航空材料学报,2003, 23:215-219.

ZHAO Y Q, XI Z P, QU H L.Current situation of titanium alloy materials used for national aviation\[J\].Journal of Aeronautical Materials,2003, 23:215-219.(In Chinese)

\[2\]黄天娥,范桂彬.航空用钛合金材料及钛合金标准发展综述\[J\].航空标准化与质量,2010(3):30-33.

HUANG T E, FAN G B.The development of titanium and titanium alloy standard used for national aviation[J].Aeronautic Standardization and Quality,2010(3):30-33.(In Chinese)

\[3\]陈振华.钛及钛合金[M].北京:化学工业出版社,2005.

CHEN Z H.Titanium and titanium alloys[M].Beijing: Chemical Industry Press,2005.(In Chinese)

\[4\]陈鼎,黄培云,黎文献.金属材料的深冷处理发展概况\[J\].热加工工艺,2001,3(4):57-59.

CHEN D, HUANG P Y, LI W X.The development of cryogenic treatment about metal materials[J].Hot Working Technology,2001,3(4):57-59.(In Chinese)

\[5\]JIANG Y,CHEN D,JIANG Q.Infilence of thermocold cycling treatment on AZ91 magnesium alloy[J].Metal Science and Heat Treatment,2012,53(11/12):589-593.

\[6\]陈鼎.铝和铝合金的深冷处理\[D\].长沙:中南大学,2000.

CHEN D. Cryogenic treatment of Al and Al anoys\[D\].Chang-sha:Central South University,2000.(In Chinese)

\[7\]黄云战,晋芳伟.深冷处理对铜合金组织和性能的影响\[J\].金属热处理,2001,26(7):5-6.

HUANG Y Z,JIN F W.Effect of crygenic treatment on microstructure and property of copper alloys\[J\].Heat Treatment of Metals,200l,26(7):5-6.(In Chinese)

\[8\]ZHIRAFAR S.Effect of cryogenic treatment on the mechanical properties of steel and aluminum alloys\[D\].Montreal,Canada:Master Thesis of Concordia University,2005.

\[9\]SHEVTSOV M A.Some new tendencies in the development of electrical resistance furnace and production processes for heat and chemical heat treatment of metal abroad\[J\].Metal Science and Heat Treatment,1987,29(5/6):428-434.

\[10\]SONG X P, GU H C. Twining in tensile and cyclic deformation of commercially pure titanium at cryogenic temperature\[J\]. Chinese Journal of Materials Research,2000,14(1):194-199.

\[11\]SUN Q Y, GU H C. Tensile and lowcycle fatigue behavior of commercially and Ti5Al2.5Sn alloy at 293K and 77K\[J\]. Mater Sci Eng A,2001,A316:80-86.

\[12\]SUN Q Y, ZHU R H, GU H C.Monotonic and cyclic behavior of Ti2.5Cu alloy at room temperature(293K) and 77K\[J\]. Materials Letters,2002,54(2/3):164-168.

\[13\]陈瑞润,丁宏升. 热处理对Ti46Al0.5W0.5Si合金组织和性能的影响\[J\].特种铸造及有色合金,2008(s):271-273.

CHEN R R, DING H S. Effect of heat treatments on structure and mechanical properties of Ti46Al0.5W0.5Si alloys[J].Special Casting & Nonferrous Alloys,2008(s):271-273.(In Chinese)

\[14\]骆军,朱航天,梁敬魁. 晶粒尺寸和应变的X射线粉末衍射法测定\[J\]. 物理, 2009, 38(4):267-275.

LUO J, ZHU H T,LIANG J K. Determination of crystallite size and strain by Xray powder\[J\].Physics, 2009,38(4):267-275.(In Chinese)

\[15\]JIANG Y,CHEN Z H, LUI J W. Effect of cryogenic treatment on the microstructure and mechanical properties of AZ31 Magnesium alloy[J]. Materials and Manufacturing Processes,2010,25(8):837-841.

\[16\]陈鼎,夏树人.镁合金深冷处理研究\[J\].湖南大学学报:自然科学版,2008,35(1):62-65.

CHEN D, XIA S R. Study on improving performance of magnesium alloy by deep cryogenict reatment\[J\].Journal of Hunan University:Natural Sciences,2008,35(1):62-65.(In Chinese)

\[17\]陈鼎,黎文献.深冷处理下铝和铝合金的晶粒转动\[J\].中南工业大学学报:自然科学版,2000,3l(6):544-547.

CHEN D,LI W X.Grain preferred orientation of Al and Al alloys through cryogenic treatment\[J\].Joumal of Central South University of Technology:Natural Science,2000,3l(6):544-547.(In Chinese)

上一篇:住宅建筑工程施工技术质量控制的有效策略分析 下一篇:深入房屋建筑工程质量管理的探讨