变应性鼻炎重塑及相关因子的研究

时间:2022-09-05 09:48:28

变应性鼻炎重塑及相关因子的研究

[摘要] 变应性鼻炎与支气管哮喘均属于呼吸道炎症疾病,由IgE介导、嗜酸粒细胞数量在气道显著增加为其病理生理特点,两者有相似且交叉的发病机制及临床治疗,流行病学上两者的发病率密切相关,基于“同一气道、同一疾病”的观点,在支气管哮喘重塑研究的基础上,变应性鼻炎是否存在重塑尚有争议,本文总结变应性鼻炎在流行病学上与哮喘的关系,鼻黏膜在变应原长期刺激下的重塑(包括上皮细胞、基底膜厚度、血管及黏液腺的改变)及在重塑研究中可能起重要作用的细胞因子,更加全面且深入地研究变应性鼻炎,旨在为临床治疗变应性鼻炎提供一条新策略及途径。

[关键词] 变应性鼻炎;重塑;支气管哮喘

[中图分类号] R765.21 [文献标识码] A [文章编号] 1673-7210(2016)11(c)-0043-05

Research on remodeling and related factors of allergic rhinitis

ZHANG Qingping XU Yu

Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China

[Abstract] Allergic rhinitis and bronchial asthma are respiratory inflammatory diseases mediated by IgE, the number of eosinophils in the airway was significantly increased as the pathological and physiological characteristics, the two have similar and cross the pathogenesis and clinical treatment, epidemiological study on the incidence of the two closely linked,based on the "one airway, one disease" point of view, the study of remodeling on bronchial asthma is comprehensive, allergic rhinitis remodeling remains controversial, this article aims to summarize the relationship between allergic rhinitis and asthma in the epidemiology, remodeling of the nasal mucosa in long-term allergen stimulated (including epithelial cells, basement membrane thickness, vascular and glandulae mucosa changes) and the cytokines may play an important role in the remodeling of the nasal mucosa, more comprehensive and in-depth study of allergic rhinitis, and provide a new strategy and approach for the treatment of allergic rhinitis.

[Key words] Allergic rhinitis; Remodeling; Bronchial asthma

应性鼻炎(allergic rhinitis,AR)和支气管哮喘(bronchial asthma,BA)均属于气道变应性疾病,在致敏原的刺激下Th1/Th2 CD4+细胞分化偏倚Th2 CD4+细胞,以IgE介导、嗜酸粒细胞浸润为主要特征,肥大细胞、T淋巴细胞、嗜碱粒细胞等多种炎性细胞及其分泌的细胞因子(IL-4、IL-5、IL-6、IFN-r、TNF-α等)参与的呼吸道慢性变应性炎症疾病。哮喘,为变应性炎症引起的下气道病变,气道长期处于修复和重塑的动态平衡状态,最终导致气道不可逆性缩窄,并发老年慢性支气管炎、肺气肿、肺心病等严重疾患。在哮喘气道黏膜组织重塑的基础研究上学者们把目光放在了AR鼻黏膜是否可能和下呼吸道相似存在组织重塑,相关的报道不多且已有的报道尚存在争议。本文就近年对AR在流行病学与哮喘的关系、鼻黏膜病理组织重塑及与之可能相关的重塑因子做一总结。

1 流行病学

《全球哮喘负担报告》公布,世界范围内已有3亿多例的哮喘患者,且尚有许多潜在增加的患者未统计在内[1]。AR患者在全球范围内亦持续增多[2-3]。Settipane等[4]进行了一项为期23年的前瞻性调查研究,发现10.5%的AR患者会发展为哮喘,而未患有AR的人只有3.6%会发展为哮喘。Togias[5]报道,AR患者中同时患有哮喘的占20%~38%,显著高于普通人群的3%~8%。哮喘患者中有60%~70%同时患有AR,而普通人群AR的患病率为5%~25%。Grossman[6]首次明确提出“同一气道、同一疾病”的观点,强调呼吸道炎症性疾病整体性的概念,提示鼻黏膜的过敏性炎症反应(鼻痒、鼻塞、流清涕、打喷嚏)为气道炎症的局部表现。

2 鼻黏膜在变应原长期刺激下的重塑

鼻黏膜是呼吸道对外来物质的第一道屏障,电镜下可见纤毛柱状上皮细胞纤毛整齐,上皮间细胞紧密连接,基底细胞无破坏、基底膜无增厚,血管无扩张和淤血,而AR鼻黏膜上皮、基底膜、血管增生及黏液分泌等方面是否存在重塑,尚无完全统一的观点。

2.1 鼻黏膜上皮细胞的改变

在既往的报道中,AR患者鼻黏膜组织可观察到上皮细胞损伤,上皮细胞间的紧密连接被破坏[7]。Glück等[8]报道在花粉致敏期,AR患者鼻黏膜上皮细胞显著增生和化生,纤毛细胞缺失,杯状细胞数量无改变[9]。另有报道,常年性AR患者相对于正常对照组鼻黏膜上皮增厚,并且可以观察到上皮细胞化生[10-13]。目前,大部分学者认为,AR鼻黏膜受损与哮喘支气管黏膜相比不如其明显,但是电镜下还可以察觉到一些细微的变化,如细胞质空泡的形成和细胞间的间隙增大,纤毛细胞的不典型增生和化生[14-15]。

2.2 基底膜厚度

在无哮喘病史的AR患者中,Chakir等[16]对其支气管黏膜活检进行基底膜研究,发现Ⅰ和Ⅲ型胶原、纤维连接蛋白相对于健康对照组在基底膜区的含量增加,上呼吸道基底膜区是否有相同的变化,Mora等[17]取26位AR患者下鼻甲黏膜进行研究,发现92.3%基底膜区增厚。Agha-Mir-Salim等[18]研究发现,基底膜增厚在AR患者下鼻甲黏膜中较为常见,其可能是对上皮细胞损伤的反应,胶原沉积导致的纤维化可能是一种保护和调节机制,避免鼻黏膜过度水肿扩张和增加通气阻力。另外,支气管哮喘有关研究报道,基底膜的厚度与疾病本身的严重程度相关[19],但在AR疾病中尚缺乏此方面大样本有力的研究。

2.3 血管重塑

AR鼻黏膜血管重塑目前研究尚无统一定论。鼻腔黏膜下的血管极其丰富,有大量的小动脉、小静脉及其组成的血管网。通过比较AR患者与正常对照组患者鼻黏膜血管体积和密度,提示无血管再生[20],但是促进血管起始形成及成熟的细胞因子,如PDGF及血管内皮生长因子(vascular endothelial growth factor,VEGF)在鼻黏膜表达上升[21]。

2.4 黏液腺改变

黏液的分泌一部分由鼻黏膜表皮的杯状细胞产生,同时在固有层也有一些浆液-黏液分泌腺。在对季节性AR的研究中发现,在发病期杯状细胞数量与平时没有明显不同,所以于杯状细胞的数量在AR患者鼻黏膜中是否有增多仍值得商榷[9]。另外,Salib等[22]研究报道提示,腺体的结构有变化,如腺泡肿胀、腺泡和导管退化萎缩甚至阻塞。

3 鼻黏膜重塑相关细胞因子和生长因子

近些年,研究AR重塑相关的细胞因子和生长因子相关报道大量涌现,其中转化生长因子β1(transforming growth factor beta 1,TGF-β1),基质金属蛋白酶(matrix metalloproteinases,MMPs)和基质金属蛋白酶抑制剂(tissue inhibitor of metalloproteinases,TIMPs),VEGF和PDGF与AR的发生、发展密切相关。

3.1 TGF-β

TGF-β有6种亚型,其中TGF-β1、TGF-β2、TGF-β3有60%~80%的序列同源。TGF-β1存在于所有的哺乳动物中,促进细胞组织修复和纤维化的发生[23],在气道的重塑中有极其重要的作用。Makinde等[24]研究在哮喘大鼠模型中TGF-β可以诱导气管上皮凋亡,上皮脱落、黏液高分泌、血管生成、动脉平滑肌细胞过度肥大。TGF-β在气道上皮重塑中促进细胞外基质的合成和组织纤维化[25]。Am[26]在研究中发现,TGF-β1的高表达与慢性鼻窦炎不伴息肉(CRSsNP)类型组织病理学特点以纤维化为主有重要的关系,在慢性鼻窦炎伴鼻息肉(CRSwNP)及正常组织中呈低表达。相关文献报道,CRSwNP相对于CRSsNP其基质金属蛋白酶抑制剂-1(tissue inhibitor of metalloproteinase-1,TIMP-1)及基质金属蛋白酶抑制剂-4(TIMP-4)呈明显的低表达,不能抑制基质金属蛋白酶-7(MMP-7)和基|金属蛋白酶-9(MMP-9)的水解活性,而这可能与TGF-β1含量减少相关[27]。冯会杰等[28]证实,TGF-β1在AR患者取下鼻甲组织进行定量检测呈高表达,导致基底膜增厚,固有层纤维化面积增加,参与了AR黏膜的重塑,与疾病的发生、发展有着密切的关系。

3.2 MMPs与TIMPS

MMPs是锌离子依赖的肽链内切酶的总称,具有蛋白水解酶活性,可水解细胞外基质组分,包括MMP-1、MMP-2、MMP-7及MMP-9等26种亚型,TIMPs为基质金属蛋白酶抑制剂,包括TIMP-1、TIMP-2、TIMP-3及TIMP-4 四种亚型,抑制基质降解。机体状态下MMPs及TIMPs通过影响细胞外基质降解与重组的动态平衡而参与胚胎发育、组织重构、创伤修复等生理及病理过程。MMP-9又称为Ⅳ胶原酶、明胶酶,可降解Ⅳ、Ⅴ型胶原,明胶蛋白及弹性蛋白等。Hoshino等[29]报道,BA患者的支气管黏膜,相对于对照组基底膜增厚,MMP-9呈高表达,TIMP-1起主要抑制作用,Mautino等[30]研究发现,未经临床治疗的哮喘患者其支气管肺泡灌洗液可检测高表达水平TIMP-1,提示与组织纤维化相关。MMPs与TIMP-1两者之间的平衡打破可导致细胞外基质在气道壁沉积增多,参与气道重塑。近年来,MMPS、TIMPs与AR关系研究逐渐增多,Asano等[31]研究发现,在AR患者中,MMP-2和MMP-7作为主要的蛋白水解酶参与了鼻黏膜的重塑。Shin等[32-33]的实验结果显示,在AR患者中TIMP-1表达增加。

3.3 VEGF

VEGF家族包括VEGF-A、B、C、D、E、F和胎盘生长因子7种类型,其中VEGF-A在机体病理生理方面起主要作用,其亚型VEGF121和VEGF165在炎症反应过程中是主要的分泌物且具有较强的生物活性[34]。VEGF是较强的血管通透因子,其效力至少是组胺的一万倍。VEGF通过控制内皮细胞的增殖和迁移来调节血管生成,在气道上皮修复和重塑过程中起重要的作用。VEGF在哮喘患者的气道呈高表达[35]。相关文献研究发现,在AR患者鼻黏膜中,VEGF表达上调[36]。VEGF基因主要表达在支气管和鼻息肉黏膜上皮,缺氧促进其表达[37]。另一血管生成相关因子PDGF促进血管内皮细胞通透性,上调内皮细胞黏附分子。最近文献报道,PDGF通过ERK通路调节MMPs和TIMPs的动态平衡促进平滑肌细胞增殖[38]。VEGF和PDGF分别负责血管形成的启动和成熟[39]。Moon等[40]报道,在AR鼻黏膜血管重塑中血管生成相关因子如VEGF和PDGF存在着重要的因果关系,拮抗VEGF和PDGF受体可以抑制重塑过程,其机制可能通过调节MMP-9/TIMP-1的表达。

目前橹梗AR鼻黏膜是否明确存在重塑仍有争议。Chanez等[41]认为,在长期AR患者中无上皮细胞受损和基底膜增厚。Eifan等[42]的研究发现:与健康对照组比较,实验组AR患者鼻黏膜虽然在鼻部症状评分、视觉模拟量表、生活质量评分、鼻腔灌洗液诸如IL-4,IL-5,IL-13高于对照组,并且黏膜下嗜酸粒细胞增多,但是长期AR鼻黏膜不存在明显的组织重塑,长期AR和健康对照组在血管和淋巴管生成、细胞外基质沉积、胶原沉淀、网状基底膜厚度及腺体面积百分比方面没有统计学差异。但是大部分学者仍倾向于AR鼻黏膜存在重塑,尽管鼻黏膜作为呼吸道第一道防御屏障并且长期暴露在致敏性物质和抗原中,其结构的重塑不如支气管黏膜明显,对于这种差异目前提出两个可能的因素:一方面在哮喘中平滑肌细胞对于结构的重塑发挥了重要作用,然而鼻黏膜缺乏此种细胞;另一方面,胚胎分化的不同,鼻黏膜来自外胚层,支气管黏膜由内胚层分化而来,两者的基因表达不同可能是气道重塑差异的重要原因,但仍需要进一步研究[43-45]。

综上所述,相对于哮喘,AR鼻黏膜组织重塑的确切发生机制尚须进一步实验研究,随着认识的深入,将为临床上治疗AR提供新的治疗策略。

[参考文献]

[1] Masoli M,Fabian D,Holt S,et al. The global burden of asthma: executive summary of the GINA Dissemination Committee Report [J]. Allergy,2004,59(5):469-478.

[2] Rotiroti G,Scadding GK. Allergic rhinitis-an overview of a common disease [J]. Paediatrics and Child Health,2012, 22(7):287-292.

[3] Zhang Y,Zhang L. Prevalence of allergic rhinitis in China [J]. Allergy Asthma Immunol Res,2014,6(2):105-113.

[4] Settipane RJ,Hagy GW,Settipane GA. Long-term risk factors for developing asthma and allergic rhinitis: a 23 years follow up study of college students [J]. Allergy Proc,1994, 15(1):21-25.

[5] Togias A. Rhinitis and asthma:evidence for respiratory system integration [J]. Allergy Clin Immunol,2003,111(6):1171-1183.

[6] Grossman J. One airway,one disease [J]. Chest,1997,111(2):11-16.

[7] Ishii J,Naito K,Miyata S,et al. An electron microscopic study of the relation between epithelial cell damage and eosinophilia in the nasal mucosa of patients with nasal allergy [J]. Arerugi,2000,49(12):1156-1162.

[8] Glück U,Gebbers J. Epithelial changes in seasonal allergic rhinitis throughout the year:evidence of coexistent air pollution and local secretory IgA deficiency? [J]. ORL J Otorhinolaryngol Relat Spec,2000,62(2):68-75.

[9] Karlsson G,Pipkorn U. Natural allergen exposure does not influence the density of goblet cells in the nasal mucosa of patients with seasonal allergic rhinitis [J]. ORL J Otorhinolaryngol Relat Spec,1989,51(3):171-174.

[10] Talaat MA,Inaam PK,Mohammed MH,et al. The histological and histochemical effects of ketotifen in allergic rhinitis [J]. J Asthma,1991,28(2):117-128.

[11] Laliberte F,Laliberte MF,Lecart S,et al. Clinical and pathologic methods to assess the long-term safety of nasal corticosteroids [J]. Allergy,2001,55(8):718-722.

[12] Minshall E,Ghaffar O,Cameron L,et al. Assessment by nasal biopsy of long-term use of mometasone furoate aqueous nasal spray (Nasonex) in the treatment of perennial rhinitis [J]. Otolaryngol Head Neck Surg,1998,118(118):648-654.

[13] Amin K,Rinne J,Haahtela T,et al. Inflammatory cell and epithelial characteristics of perennial allergic and nonallergic rhinitis with a symptom history of 1 to 3 years' duration [J]. J Allergy Clin Immunol,2001,107(2):249-257.

[14] Nagata H,Motosugi H,Sanai A. Enhancement of submicroscopic damage of the nasal ephitelium by local allergen challenge in patients with perennial nasal allergy [J]. Ann Otol Rhinol Laryngol,2001,110(3):236-242.

[15] 向s,许昱,欧劲.空气污染对儿童变应性鼻炎影响的Meta分析[J].中国医药导报,2014,11(15):109-113.

[16] Chakir J,Laviolette M,Boulet M,et al. Lower airways remodeling in nonasthmatic subjects with allergic rhinitis [J]. Lab Invest,1996,75(5):735-744.

[17] Mora PM,Blanco E,Campos JJM,et al. Nasal remodeling in patient with perennial allergic rhinitis [J]. Rev Alerg Mex,2003,50(3):79-89.

[18] Agha-Mir-Salim P, Rauhut O, Merker HJ. Electron and fluorescence microscopic investigations on composition and structure of the epi-thelial basement membrane of the human inferior nasal concha [J]. Eur Arch Otorhinolaryngol,1993,250(7):401-407.

[19] Chetta A,Foresi A,Del Donno M,et al. Airways remodeling is a distinctive feature of asthma and is related to severity of diseases [J]. Chest,1997,111(4):852-857.

[20] Abrams DC,Toynton SC,Dore C,et al. Stereological estimation of blood vessel surface and volume densities in human normal and rhinitic nasal mucosa [J]. Rhinology,1997,35(1):22-27.

[21] Mori S,Fujieda S,Sunaga H,et al. Expression of plateletderived endothelial cell growth factor and vascularity in the nasal mucosa from allergic rhinitis [J]. Clin Exp Allergy,2000,30(30):1637-1644.

[22] Salib RJ,Howarth PH. Remodeling of the upper airway in allergic rhinitis:is it a feature of the disease? [J]. Clin Exp Allergy,2003,33(12):1629-1633.

[23] Asakura T,Ishii Y,Chibana K,et al. Leukotriene D4 stimulates collagen productin from myofibroblasts transformed by TGF-beta [J]. Allergy Clin Immunol,2004,114(2):310-315.

[24] Makinde T,Murphy RF,Agrawal DK. The regulatory role of TGF-βin airway remodeling in asthma [J]. Immunol Cell Biol,2007,85(5):348-356.

[25] Leask A,Abraham DJ. TFG-beta signaling and the fibrotic response [J]. FASEB J,2004,18(7):816-827.

[26] Am J. Transforming growth factor beta 1 in nasal remodeling:differences between chronic rhinosinusitis and nasal polyposis [J]. Am J Rhinol,2004,18(5):267-272.

[27] Li X,Meng J,Qiao X,et al. Expression of TGF,matrix metalloproteinases,and tissue inhibitors in Chinese chronic rhinosinusitis [J]. J Allergy Clin Immunol,2010,125(5):1061-1068.

[28] T会杰,周焕,杨扬,等.变应性鼻炎鼻黏膜组织重塑的研究及转化生长因子β1在鼻黏膜中的表达[J].现代生物医学进展,2012,12(11),2151-2154.

[29] Hoshino M,Takahashi M,Takai Y,et al. Inhaled corticosteroids decrease subepithelial collagen deposition by modulation of the balance between matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 expression in asthma [J]. J Allergy Clin Immunol,1999,104(2 Pt 1):356-363.

[30] Mautino G,Henriquet C,Jaffuel D,et al. Tissue inhibitor of metalloproteinase-1 levels in bronchoalveolar lavage fluid from asthmatic subjects [J]. Am J Respir Crit Care Med,1999,160(1):324-330.

[31] Asano K,Kanai KI,Suzaki H. Suppressive activity of fexofenadine hydrochloride on metalloproteinase production from nasal fibroblasts in vitro [J]. Clin Exp Allergy,2004, 34(12):1890-1898.

[32] Shin HW,Han DH,Lim YS,et al. Nonasthmatic nasal polyposis patients with allergy exhibit greater epithelial MMP positivity [J]. Otolaryngol Head Neck Surg,2009,141(4):442-447.

[33] Chen Y-S,Langhammer T,Westhofen M,et al. Relation between matrix metalloproteinases MMP-2,MMP-9,tissue inhibitor of matrix metalloproteinases-1 and IL-5,IL-8 in nasal polyps [J]. Allergy,2007,62(1):66-72.

[34] Pufe T,Petersen W,Tillmann B,et al. Splice variants VEGF121 and VEGF165 of angiogenic peptide vascular endothelial cell growth factor are expressed in the synovial tssue of patients with rheumatoid arthritis [J]. J Rheumatol,2001,28(7):1482-1485.

[35] Boussat S,Eddahibi S,Coate A,et. al. Expression of vascular endothelial growth factor in human pulmonary epithelial cells [J]. Am J Physiol Lung Cell Mol Physiol,2000,279(2):L371-L378.

[36] Yuksel H,Kose C,Yilmaz O,et al. Increased expression of tissue vascular endothelial growth factor and foetal liver kinase-1 receptor in seasonal allergic rhinitis and relevance to asthma component [J]. Clin Exp Allergy,2007,37(8):1183-1188.

[37] Jiang S,Dong Z,Zhu D,et al. Hypoxia effects on vascular endothelial growth factor derived epithelial cells of nasal polyps [J]. Zhonghua Er Bi Yan Hou Ke Za Zhi,2002,37(1):34-37.

[38] Ito I,Fixman ED,Asai K,et al. Platelet-derived growth factor and transforming growth factor-beta modulate the expression of matrix metalloproteinases and migratory function of hunman airway smooth muscles cells [J]. Clin Exp Allergy,2009,39(9):1370-1380.

[39] Laschke MW,Elitzsch A,VollmarB,et al. Combined inhibition of vascular endothelial growth factor(VEGF),fibroblast groowth factor and platelet-derived endothelial growth factor,but not inhibition of VEGF alone,effectively suppresses angiogenesis and vessel maturation in endometriotic lesions [J]. Human Reproduction,2006,21(1):262-268.

[40] Moon IJ,Kim DY,Rhee CS,et al. Role of angiogenic factors in airway remodeling in an allergic rhinitis murine model [J]. Allergy Asthma Immunol Res,2012,4(1):37-45.

[41] Chanez P,Vignola AM,Vic P,et al. Comparison between nasal and bronchial inflammation in asthmatic and control subjects [J]. Am J Respir Crit Care Med,1999,159(2):588-595.

[42] Eifan AO,Orban NT,Jacobson MR,et al. Severe Persistent Allergic Rhinitis. Inflammation but No Histologic Features of Structural Upper AirwayRemodeling [J]. Am J Respir Crit Care Med,2015,192(12):1431-1439.

[43] Kitaoka H,Burri PH,Weibel ER. Development of the human fetal airwaytree:analysis of the numerical density of airway endtips [J]. Anat Rec,1996,244(2):207-213.

[44] Mina M. Regulation of mandibular growth and morphogenesis [J]. Crit Rev Oral Biol Med,2001,12(4):276-300.

[45] Bachler M,Neübuser A. Expression of members of the Fgf family and their receptors during midfacial development [J]. Mech Dev,2001,100(2):313-316.

(收稿日期:2016-08-16 本文辑:王红双)

上一篇:苦参碱类生物碱在鼻咽癌治疗中的作用 下一篇:SDF―1/CXCR4轴与肿瘤转移研究进展