油气管道陆上隧道勘察要点

时间:2022-08-22 07:28:53

油气管道陆上隧道勘察要点

摘要:油气管道作为重要的油气输送工程,穿越山区的陆上隧道工程多样。该类工程勘察以隧道的围岩级别确定、隧道涌水量预测和洞口稳定性为重点,勘察技术和方法选择以工程地质调绘和工程物探为主,工程钻探为辅的原则进行勘察工作。

关键词:油气管道;隧道勘察

中图分类号:TE973文献标识码: A

1前言

油气管道工程是我国实施能源战略的重点项目之一,是我国能源进口的重要通道工程。在油气输送线路工程的山区穿越过程中陆上隧道工程在所难免。

2 油气管道隧道勘察须解决的核心问题

油气管道陆上隧道勘察以确定隧道的成洞条件为根本,以保障施工安全为指导思想。以此为出发点,此类隧道勘察所必须解决的核心问题归结为隧道的围岩级别划分、涌水量预测和洞口稳定性三大核心问题。

3 隧道围岩级别划分

隧道围岩基本分级根据岩石坚硬程度和岩体完整程度及围岩基本质量指标BQ为量化标准,从高到底分为Ⅰ~Ⅵ级。在隧道围岩基本分级的基础之上,考虑地下水状态影响和初始应力状态影响对隧道围岩基本分级进行修正。因此岩石坚硬程度、岩体完整性、地下水状态、初始地应力状态,是影响隧道围岩划分的四大因素。

3.1 岩石坚硬程度

岩石坚硬程度的划分以岩性为定性标准,以岩石饱和单轴抗压强度Rc为定量指标。

(1)对于岩石岩性确定需要对区域地质资料进行了解并进行充分的地质调绘工作,结合波速测井资料分析确定。

(2)对于岩石饱和单轴抗压强度Rc的确定采用钻孔岩芯采取岩石样进行岩石室内试验确定。对于岩石采样要特别注意要采取隧道底板以上3倍洞径范围内的岩石样,岩石样采取必须具有代表性,对存在裂隙的岩芯也要作为代表性样品采集。在实际操作中经常出现采取完整岩芯作为试验样品的情况,导致岩石饱和单轴抗压强度整体偏大。根据隧道围岩基本质量指标计算公式,Rc值偏大对围岩判定影响很大,致使围岩基本质量指标BQ偏大,这是相当危险的。

BQ=90+3Rc+250Kv

当Rc>90 Kv+30时,应以Rc=90 Kv+30和Kv带入计算BQ值;

当Kv>0.04Rc +0.4时,应以Kv=0.04Rc +0.4和Rc带入计算BQ值。

3.2 岩体完整程度

(1)岩体完整程度的定量指标用岩体完整性系数Kv表达。Kv一般用弹性波速探测值,若无探测值时,可用岩体体积节理数Jv按表1确定对应的Kv值。

表1Jv与Kv对照表

Jv(条/m³) <3 3~10 10~20 20~35 >35

Kv >0.75 0.75~0.55 0.55~0.35 0.35~0.15 <0.15

(2) Kv与定性划分的岩体完整程度的对应关系可按表2确定。

表2Kv与定性划分的岩体完整程度的对应关系

Kv >0.75 0.75~0.55 0.55~0.35 0.35~0.15 <0.15

完整程度 完整 较完整 较破碎 破碎 极破碎

(3) 通过地质调绘确定岩体体积节理数Jv(条/m³),应针对不同的工程地质岩组或岩性段,选择有代表性的露头或开挖壁面进行节理(结构面)统计。除成组节理外,对延伸长度大于1m的分散节理亦应予以统计。已为硅质、铁质、钙质充填再胶结的节理不予统计。

每一测点的统计面积不应小于2m×5m。岩体Jv值应根据节理统计结果按如下公式计算:

Jv=S1+ S2+……+ Sn+ Sk

式中:Sn―第n组节理每米长测线上的条数;

Sk―每立方米岩体非成组节理条数(条/m³)。

(4) 岩体完整性指标(Kv),应针对不同的工程地质岩组或岩性段,选择代表性的点、段,测试岩体弹性纵波速度,并应在同一岩体取样测定岩石纵波速度。按下式计算:

Kv=(vpm/vpr)2

式中:vpm―岩体弹性纵波速度(km/s);

vpr―岩石弹性纵波速度(km/s)。

3. 3 地下水状态

隧道围岩地下水状态的判定,根据隧道各段涌水量预测确定隧道开挖时的出水状态。

(1)根据区域地质资料进行了解并进行水文地质调查工作,确定隧道围岩的透水特征与富水性,划分含水层与相对隔水层。隧道区断层破碎带内赋存构造裂隙水,富水性好,对隧道有影响,开挖时可能会出现淋水或涌水。

(2)根据水文地质试验,如抽水试验、提水试验、压水试验等钻孔水文地质试验,确定各段隧道围岩的透水性。

(3)结合工程地质调绘,利用物探手段确定岩溶发育情况,对岩溶发育段的涌水进行考虑。

3.4 初地始应力状态

隧道围岩的初地始应力状态,是预测隧道开挖时隧道围岩岩体是否产生岩爆及塑性变形的依据。

(1)隧道围岩的初始地应力状态应根据地应力测试进行确定。

(2)围岩初始地应力状态当无实测资料时,可根据隧道工程埋深、地貌、地形、地质、构造运动史、主要构造线与岩芯饼化等特殊地质现象,按《工程岩体分级标准》(GB50218-94)附录B和《油气田及管道岩土工程勘察规范》(SY/ 0053-2004)附录F对岩体初始应力评估基准Rc/σmax的值大小进行评估,Rc/σmax<4,为极高应力分布区,4<Rc/σmax<7,为高应力分布区,Rc/σmax>7,为低应力分布区。

σmax=(0.8~1.2)×H×γ

σmax―垂直洞轴线方向的最大初始应力;

Rc―岩石饱和单轴抗压强度;

H―工程埋深(m);

γ―岩体重力密度(KN/m3);

3.4 隧道围岩级别的修正

隧道围岩级别应在围岩基本分级的基础上,结合隧道工程的特点,考虑地下水状态、初始地应力状态等必要的因素进行修正。

(1)地下水状态按照干燥或湿润、偶有渗水、经常渗水三种状态划分为Ⅰ、Ⅱ、Ⅲ三个级别。根据不同的级别结合围岩基本分级进行修正。

(2)按照初始地应力状态的判定,对于高应力和极高应力两种状态对隧道围岩级别进行修正。

(3)隧道洞身埋深较浅,应根据围岩受地表的影响情况进行围岩级别修正;当围岩为风化层时,应按风化层的围岩基本分级考虑;围岩仅受地表影响时,应较相应围岩级别降低1~2级。

4 隧道涌水量预测

隧道涌水量预测是隧道勘察的难点,由于隧道所处自然环境复杂多变,工程地质条件与水文地质条件具有高度不确定性,给隧道涌水量的准备预测和计算带来极大的困难。

4.1 隧道涌水量预测方法的选择

隧道的涌水量预测一般采用两种以上预测方法,结合工程实际进行隧道涌水量预测,综合比较得出较为贴合实际的涌水量。

(1)隧道正常涌水量进行预测,根据不同的工程地质条件和水文地质条件,可采用比拟法、大气降水入渗法、迳流模数法、水平坑道法(地下水动力学公式)、铁路勘测规范经验公式、裘布依理论式、大岛洋志公式等七种常用方法供选择进行计算。

(2)对于隧道最大涌水量预测,可在隧道正常涌水量的基础上,根据不同的地区经验、水文、气象、地质条件,对正常涌水量预测公式中相应影响系数的进行调整或公式变形后计算得出;也可采用古德曼经验式、佐藤邦明非稳定流式等专门的隧道最大涌水量预测公式方法计算。

(3)以上方法都是基于参数确定的确定性数学模型类方法,对于水文地质条件复杂地区,特别是岩溶水地区采用以上方法就不能满足对隧道涌水量预测的判定。对于此类影响因素随机性较强的隧道涌水量预测,目前普遍采取对隧址区进行专门水文地质调查,结合区域水文地质情况对影响涌水量的因素进行附加。如调查地表补给与排泄、增加地下水特别是地下暗河补给与排泄量、区域性较长时间地下水动态观测等方法,也可根据地表排泄点统计进行反演推算等方法预测。

4.2 隧道涌水量勘察要点

根据隧道所在地区的地质条件和水文地质条件,按照所选择的涌水量预测方法进行针对性的勘察工作。

(1)收集区域水文地质、气象、地下水观测等资料。

(2)进行水文地质调查,包括井泉、地表水、地下水补给及排泄等。

(3)进行钻孔水文地质试验,确定含水层厚度、渗透系数等水文地质参数。

(4)进行物探测试工作,特别是在岩溶区,查明隐伏溶洞、岩溶裂隙及地下暗河等的发育情况。

5 洞口稳定性

隧道的洞口工程作为隧道常规开挖的先步工程,洞口部位的成洞和其稳定性是纵贯整个隧道施工的关键点之一,因此隧道洞口的勘察尤为重要。隧道洞口部位因其所在山体的位置处于坡体或崖坎壁,根据洞口所处坡体岩土体特征和地质条件的不同,多分为土质坡体、岩质坡体。

5.1 土质边坡洞口

隧道洞口为土质边坡或岩土质边坡的,多会出现不稳定边坡,应根据工程地质调绘结合钻探对边坡进行稳定性分析,对于土体边坡可采用圆弧法进行计算自然坡体和开挖后的稳定性,对于岩土质边坡可采用折现法进行稳定性计算。

5.2 岩质边坡洞口

隧道洞口为岩质边坡时,应根据节理、岩层及结构面发育情况,运用赤平投影法等进行稳定性分析计算。岩质边坡因其岩体的风化程度,往往出现危岩、卸荷带等不良地质现象,应针对岩质边坡的特性进行专项工程地质调绘和稳定性分析。

5.3 偏压现象

因隧道进出口埋深较浅,较洞身存在偏压现象的可能性大,故应选取隧道进出口典型剖面加以分析。根据《铁路隧道设计规范》(TB10003-2005)表4.1.5-1判定是否属偏压,对于具有偏压现象的应按偏压隧道设计。

6 结束语

油气管道隧道因其具有坡率和平面曲率较铁路、公路等隧道控制性弱的特点,针对隧道勘察中确出现大型不良地质现象的情况,要加强与设计沟通,实现动态化设计,合理采取避绕措施,以有利于降低工程造价和施工难度。

参考文献:

[1] 中国石油天然气集团公司.GB 50568-2010油气田及管道岩土工程勘察规范[S].2010.

[2] 铁道第二勘察设计院.TB 10003-2005铁路设计规范[S].2005.

[3] 重庆交通科研设计院.JTG D70-2004公路隧道设计规范[S].2004.

[4] 陈文国,王岳衡.长输管道盾构隧道地质勘察设计.油气储运,2005,24(6).

[5] 安典新.隧道涌水量预测方法的研究[J].水利工程,2008(24).

作者简介:杨辉廷(1981-),男(汉族),山东青岛人,工程师,现从事工程与灾害勘察工作

上一篇:小水电安全管理浅议 下一篇:以人为本的建筑设计评析