利用智能天线广播波束赋形实施TD网络优化

时间:2022-08-15 07:25:14

利用智能天线广播波束赋形实施TD网络优化

【摘要】文章从智能天线广播波束赋形的基本原理入手,提出了一种基于此的网络优化方法。该方法借助于中国移动开发的智能天线广播波束赋形软件,通过修改天线权值数据调整广播波束赋形来取代普通天线工程参数调整,降低了人工上天面调整工程参数的难度和危险。

【关键词】TD-SCDMA 智能天线 广播波束赋形 网络优化

1 引言

中国移动TD-SCDMA在湖南长沙正式放号商用已过去一年半。一年多以来,得益于TD网络优化工作的持续深入,TD网络质量得到了明显的改善。TD无线网络优化,主要是通过调整各种相关的无线网络工程参数和无线资源参数,提高系统的关键无线网络指标。其中工程参数优化主要是通过调整天线的倾角、方向角和挂高等或者更换天线类型来达到控制小区的覆盖范围、减少导频污染、控制系统内干扰水平的目的;无线资源参数优化主要是通过调整各种相关的无线资源参数,使得网络的接入成功率、切换成功率和掉话率等指标维持在一个运营商和客户都满意的水平上。

智能天线是TD的关键技术之一,它提高了接收灵敏度,抑制干扰信号,提高了系统容量,这都是智能天线的显著优点。除此之外,智能天线还具有一个相对普通天线最大的优点――智能天线广播波束赋形,这一特点可以给优化工作带来很大的灵活性和便利性。

2 智能天线广播波束赋形基本原理

智能天线本质上是一种多阵元天线系统,通过对各阵元赋予激励信号不同的相位和幅度(也称权值)可以产生不同的波束宽度或半功率角以及半功率角的水平偏移,即形成不同的波束赋形,可以是业务波束的赋形,也可以是广播波束的赋形。

业务波束是在建立具体的通话链路后形成的。智能天线首先对有用信号及干扰信号的方向进行预测,根据预测结果对每一个用户形成一个跟踪波束,自适应地将跟踪波束的主瓣方向对准用户信号方向,同时波束的零点方向对准干扰信号方向,从而降低干扰,扩大小区半径,提高系统容量。

广播波束是在广播时隙TS0和下行导频时隙DwPTS中形成的。智能天线广播波束赋形的原理可以参考图1。

在广播时隙或下行导频时隙,基带输出信号通过功分器分发到智能天线的N个激励单元,每个激励单元对通过本分路的信号施以相应的激励(也称为权值)Wi(i=1,2,…,N),包括对幅度的激励和对相位的激励。经过激励的各分路信号经过射频组件后从各自的天线单元发射出去,而智能天线的广播波束赋形图即是各天线单元辐射场图的合成。其合成方向图的数学表示为:

(1)

其中,i表示第i个单元,k为波数,dx为相邻单元的间距,θ为离阵面法线方向的偏离角。|Wi|为单元激励权值Wi的幅度部分,φi为Wi的相位部分。fi(θ)为第i个单元在阵中的有源方向图(以第i个单元的相位中心为相对坐标原点),F(θ)为合成的阵列方向图。

在天线仿真或实际的天线测量中,通常容易获得第i个单元在阵中的有源方向图fi’(θ),其与fi(θ)的对应关系为:

(2)

因此,合成方向图F(θ)也可以表示为:

(3)

由式(3),F(θ)也可进一步表示为fi’(θ)的复权值叠加:

(4)

式(4)中,由于fi’(θ)已经获得(可以是测量得到或从天线厂家得到),通过试探改变复权值Wi的设置,就可以不断地调整合成方向图F(θ),从而尽可能地逼近所期望合成的广播波束方向图Fdest(θ)。最终,把能够实现F(θ)与Fdest(θ)最佳逼近的一组权值(W1,W2,…,Wn)作为智能天线的广播波束权值输入,就可以得到与期望广播覆盖效果的最佳逼近。这就是智能天线广播波束赋形的基本原理。

通过多种方式对广播波束的赋形,可以实现对广播信号覆盖的控制,如:(1)改变波束宽度,需要注意的就是旁瓣的抑制问题;(2)改变波束的指向,使得广播波束可以根据负载的变化改变扇区的指向;(3)改变波束的形状,形成特殊场景需要的覆盖形状,比如马鞍形。图2给出了广播波束赋形的一种效果,通过赋形使方向图成为马鞍形(图2右),这种效果可以应用于一些特殊场景。

3智能天线广播波束赋形在优化工作中的应用

TD智能天线的高可调谐性决定了TD无线网络的优化模式必然与GSM无线网络有着显著区别:前者主要是通过对智能天线各阵元的权值参数调整来实现,而后者主要通过对2G天线的机械调整来实现。具体的区别如表1所示:

表1TD智能天线和GSM天线在网络优化中的差异

主要区别点 智能天线 2G常规天线

基站覆盖的优化手段 权值调整和机械调整 机械调整(调整倾角和方位角)、更换天线类型(调整天线的增益和半功率角)

天线半功率角的大小 需通过权值参数来控制广播波束宽度,波束宽度可根据需求灵活配置 出厂固定配置,有30度、65度、90度、120度等类型,属硬件特性

方位角的

调整 可通过调整权值来实现波束水平偏移 机械调整

覆盖形状的

调整 通过权值调整可灵活地调整小区的覆盖形状,尤其适用于特殊场景的优化 无法灵活调整

在日常优化过程中,可以利用智能天线广播波束赋形的特点来实施网络优化,通过修改天线权值即可改变广播波束宽度或波束形状,甚至方位角。这里给出利用广播波束赋形实施TD无线网络优化的流程,如图3所示。

(1)采用路测的方法(也可以基于用户投诉),采集目标小区的覆盖数据;

(2)对数据进行分析,找出弱覆盖、覆盖盲区或导频污染区等问题区域;

(3)结合电子地图和基站分布情况,确定问题区域最合理的主覆盖小区,进而确定该小区的覆盖边界和覆盖区域形状;

(4)将所希望的小区覆盖边界和形状输入到中国移动开发的智能天线广播波束赋形软件中,得到本小区多阵元天线的广播波束赋形参数文件,通过OMCR端配置对应小区天线的广播波束赋形参数从而对问题区域进行优化;

(5)每次调整完广播波束的赋形参数,按照原有路线再次路测,采集新的数据来验证优化效果是否达到预期的水平,循环往复,直到整个网络的指标达到满意的程度。

在上述优化流程中,比较关键的环节是步骤(4),该环节可以通过中国移动开发的智能天线广播波束赋形软件实现。该软件能够基于给定的广播波束赋形图,通过人工辅助调节的方式得到一组最佳权值,用该组权值作为智能天线的输入而产生的实际广播波束赋形能够实现与目标广播波束赋形尽可能地逼近。图4所示为该软件界面。

4 结束语

利用TD智能天线广播波束赋形特点,同时借助于智能天线广播波束赋形软件,通过修改智能天线的权值数据从而改变广播波束宽度或波束形状甚至方位角,可以高效实施网络覆盖优化。这种优化方式在工程建设阶段的网络优化中,可减少工程参数调整的工程实施难度,降低施工危险,加快网络覆盖优化的速度;在维护阶段的网络优化中,可大大减少日常网络优化上天面调整天馈系统的工作量,很大程度地降低由于反复上站造成的站址业主反感度,有利于协调移动公司和业主的关系。

相比目前所采用的人工调整工程参数的方法,调整广播波束的方法具有精度高、调整方便、调整前后对比方便、可以网络化操作等特点,有利于网络优化向集中化、信息化、标准化、智能化方向发展。

参考文献

[1]李世鹤. TD-SCDMA第三代移动通信系统标准(第1版)[M]. 北京: 人民邮电出版社,2003.

[2]彭木根,王文博. TD-SCDMA移动通信系统(第2版)[M]. 北京: 机械工业出版社,2007.

[3]黄小实. 浅谈TD-SCDMA智能天线基本原理和测试方法[J]. 电子设计应用,2009(10): 10-11.

【作者简介】

李文利:工程师,硕士毕业于北京邮电大学信号与信息处理专业,现任职于中国移动通信集团湖南有限公司长沙分公司网络优化中心,主要从事GSM及TD无线网络优化工作。

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文

上一篇:无线网络编码技术的探讨 下一篇:多维度提升TD网络品质