群智能算法优化神经网络在网络安全的应用

时间:2022-08-11 11:38:47

群智能算法优化神经网络在网络安全的应用

摘 要: 研究了一种群智能优化神经网络算法的网络流量检测模型。使用QAPSO算法对RBF神经网络的基函数中心、基函数的宽度以及输出层与隐含层的连接权值进行优化。通过实例对该文研究的检测模型进行分析,使用采集的数据对网络流量识别系统进行训练和性能测试。将该文的研究方法和基于常规PSO算法、基于HPSO算法进行对比,结果表明,该文研究的检测方法具有更快的识别速度以及更好的识别准确率,避免了出现陷入局部最优解的情况发生。

关键词: 网络流量检测; 群智能算法; RBF神经网络; 网络安全

中图分类号: TN926?34; TP393 文献标识码: A 文章编号: 1004?373X(2016)20?0012?03

Abstract: The application of swarm intelligence optimizing neural network in network security and a network traffic detection model based on neural network algorithm are studied in this paper. QAPSO algorithm is used to optimize the basis function center and base function width of RBF neural network, and the connection weights of the output layer and the hidden layer as well. The detection model studied in this paper is analyzed by means of an example. The collected data is used to train the network traffic identification system and test its performance. The method researched in this paper is compared with the algorithms based on the conventional PSO and HPSO. The results show that the detection method has a faster recognition speed and better recognition accuracy, and can avoid the occurrence of local optimal solutions.

Keywords: network traffic detection; swarm intelligence algorithm; RBF neural network; network security

0 引 言

随着互联网技术不断发展和普及,互联网络中的应用和服务类型不断增加,为了提高网络安全,保护网民、公司企业以及政府部门等的财产与利益,需要对网络流量进行高效的监测[1?2]。

RBF神经网络具有强大的非线性拟合能力,即非线性映射能力,以及自学能力,同时便于计算机实现,因而在网络流量检测等网络安全领域得到了广泛应用。但是RBF神经网络的性能特别依赖网络参数选取的好坏,而传统RBF神经网络参数通常由人为按经验或随机选取,因此网络的性能具有较强的随机性[3?4]。

近年来,群智能优化算法逐渐发展并得到较为广泛的应用,其中粒子群优化算法是一种能够全局优化,具有建模速度快、收敛效率高的群智能优化算法,然而使用常规PSO算法优化神经网络仍然存在收敛速度和全局优化能力不能够达到平衡等问题[5?7]。因此本文研究一种基于量子自适应粒子群优化算法(QAPSO),对RBF神经网络的基函数中心[Ci]、基函数的宽度[σi]以及输出层与隐含层的连接权值[wi]进行优化。

1 基于群智能优化的神经网络算法

本文研究的QAPSO优化算法主要分为4部分,分别为初始化种群、估计进化状态、控制参数自适应以及处理变异[8]。

1.1 初始化种群

2 实例分析

为验证本文建立基于QAPSO优化RBF神经网络的网络流量检测模型的性能,使用基于Libsvm软件包的C#程序并结合数值计算软件Matlab R2014对网络流量进行采集、计算以及分类。网络流量检测类型如表2所示。

表2 网络流量检测类型

使用常规PSO优化算法及HPSO优化算法对RBF神经网络进行优化,并建立同样的网络流量检测模型,使用同样的训练数据样本进行训练,使用同样的测试数据样本进行性能测试。常规PSO优化算法的参数为空间维度[D=24],粒子数量[N=30],最大迭代次数[tmax=200],连接权值[w=0.9~0.4],加速系数[c1]和[c2]均为2。HPSO优化算法的参数为空间维度[D=24],粒子数量[N=30],最大迭代次数[tmax=200],连接权值[w=0.8~0.2],加速系数[c1]和[c2]均为2.5,[Vmaxd=0.5×Range]。QAPSO算法的参数为空间维度[D=24],粒子数量[N=30],最大迭代次数[tmax=200],连接权值[w=0.8~0.2],加速系数[c1]和[c2]为1.5~2.5,[Vmaxd=Range],[r1d]和[r2d]为0~1之间的随机数。

从图1可以看出,常规PSO优化算法使得适应度函数收敛到稳定值时的迭代次数为171次,HPSO优化算法使用了112次,而本文研究的QAPSO优化算法只使用了76次。同时,本文研究的QAPSO优化算法的收敛值更低,适应度函数的值即为RBF神经网络的训练误差,因此适应度函数越小,RBF神经网络的训练误差越小,性能越好。因此,本文研究的QAPSO优化算法相比另外两种PSO优化算法具有更快的收敛速度和更高的收敛精度,极大地提高了RBF神经网络的泛化能力。使用本文研究的QAPSO?RBF检测模型及常规PSO和HPSO优化RBF算法的检测模型对实验数据进行识别。表3为三种检测模型的检测准确率与反馈率对比。图2为三种模型的平均检测率和反馈率对比。

通过表3的数据可以看出,本文研究的QAPSO?RBF检测模型对12种类型网络服务与应用均有较好的识别准确率和反馈率,平均识别准确率达到了92.81%,比HPSO?RBF算法的平均识别准确率高出3.49%,比PSO?RBF算法的平均识别准确率高出6.99%。QAPSO?RBF识别算法的平均识别反馈率达到了94.81%,比HPSO?RBF算法的平均识别反馈率高出3.51%,比PSO?RBF算法的平均识别反馈率高出7.28%。可表明相比其他粒子群优化算法,本文研究的QAPSO优化算法在进行多次迭代后仍然具有较好的活跃性,跳出局部最优解,对最佳值的全局搜索能力具有非常显著的提高,加快了算法收敛速率,提高了识别准确率。

3 结 论

本文研究一种群智能优化神经网络算法的网络流量检测模型。通过实际测试验证,相比其他粒子群优化算法,本文研究的QAPSO优化算法在进行多次迭代后仍然具有较好的活跃性,跳出局部最优解,对最佳值的全局搜索能力具有非常显著的提高,加快了算法收敛速率,提高了识别准确率。

参考文献

[1] 卢金娜.基于优化算法的径向基神经网络模型的改进及应用[D].太原:中北大学,2015.

[2] 钟建坤,周永福.群智能算法优化神经网络在网安全的应用研究[J].激光杂志,2015,36(4):143?146.

[3] 李博.粒子群优化算法及其在神经网络中的应用[D].大连:大连理工大学,2005.

[4] 蒋林利.改进的PSO算法优化神经网络模型及其应用研究[D].厦门:厦门大学,2014.

[5] 陈伟.基于群体智能算法的人工神经网络优化及其应用[D].无锡:江南大学,2007.

[6] 刘晓刚.群体智能算法在RBF神经网络中的应用[D].青岛:青岛大学,2008.

[7] 马汝辉.基于网络流量异常检测的网络安全技术研究[D].无锡:江南大学,2008.

[8] 郭通,兰巨龙,李玉峰,等.基于量子自适应粒子群优化径向基函数神经网络的网络流量预测[J].电子与信息学报,2013,35(9):2220?2226.

[9] 郭通.基于自适应流抽样测量的网络异常检测技术研究[D].郑州:信息工程大学,2013.

上一篇:把客户关系管理上升到战略高度 下一篇:通信安全及远程监控目标下的物联网智能化家居...