基于PLC的机械手设计

时间:2022-07-26 12:53:06

基于PLC的机械手设计

摘 要:在本文中,所设计的控制系统是应用于机械手系统,保证机械手能够有效完成两条生产线之间的运输任务。系统整体上选用电气一体化的方法,通过气缸自锁功能能够保证机械手在抓放或者断气状态下保持机械手姿势,通过电机控制技术完成机械手多自由度运动。机械手系统具有上电初始化、原点复位、报警提示、手动操作、半自动操作及全自动操作功能,满足了企业的工作需求。

关键词:搬运机械手;电气一体化;定位控制

中图分类号:TP241 文献标识码:A

0.引言

随着制造业的快速发展,机械手成为当今时代的标志,有效改善劳动条件,保障人身安全。当前,机械手可以精确执行预先编写的程序命令,实现预计动作,被广泛应用于机床、模具锻造或者点焊、喷漆工艺方面。本文基于完成生产线之间物品运输设计的机械手系统,能够完成手臂上下伸缩、手臂左右摆动以及手指抓握3个动作;采用集成传输模式,即手臂机构采用伺服电机驱动,手爪机构则采用气压传动。

1.硬件结构设计

1.1 伺服电机选择

电机选择方面,本课题选用交流伺服电机,因为随着电机调速方法的不断研究,目前能够将电机调速范围与成本降低到宽调速直流电机。同时,交流伺服电机拥有较高的可靠性和控制性,因此目前能够得到广泛应用。而直流伺服电机内部存在电刷和换向器因素,导致电机工作可靠性降低,提高后期运行成本;交流异步电动机虽然没有电刷磨损,结构简单,成本较低,但应用时对其调速十分烦琐,成本相对较高,不经济适用。考虑到电机后期维护方便,本课题的升降电机与旋转电机都选用交流伺服电机PanasonicMDMA152P1U型号,便于后期保养维修,采用的驱动器为MDDDT5540型号。

1.2 气缸和阀门的选择

本机械手驱动系统运动速度由气流调节阀控制,运动方向由电磁阀控制。目前,气体驱动系统凭借其价格低廉等优点在工业中得到广泛应用。同时气动夹持器由于气体的可压缩性,在捕获过程中具有一定的灵活性,不会由于力度过大导致被抓取物破坏。根据指尖距离及手爪夹紧力,夹紧装置选择一个具有可调缓冲装置的双作用气缸,并设有夹紧装置和压力传感器。气缸本身配有两个一位单通阀门,本设计为了能够保证气缸在断气状态下保持气缸内部的压力,所以根据经验选用SMC公司的VZ110气开阀。

1.3 传感器的选择

传感器的功能是将被测物的物理量转变成由控制系统可以识别的电信号。实时检测系统本身以及工作对象、工作环境的状况,为控制系统提供有效精准的电信号。本课题研究的机械手,位置检测装置主要用来判断机械手执行左旋/右旋,上升/下降等动作时是否到位,通常选择行程开关,并将其安装在预先设定的位置。本机械手选用直线接触式行程开关,当行程开关检测到机械手运动到预定位置时,立即终止当前动作,准备运行下一动作。

2.机械手动作的实现过程

机械手的工作均由伺服电机驱动螺纹丝杆旋转和电机自转来完成。本机械手的一个工作周期要完成手臂下降―工件加紧―手臂上升―右旋―手臂再下降―松开工件―手臂在上升―左旋8个动作,全部由对应的限位开关来控制,系统原始位置设置在原点,当按下开始命令时,机械手会立即有序的执行预订相应动作。为确保人身安全,机械手安装了一个光电开关,当机械手右旋到预定位置时,必须检测到右工作台上没有工件时才能执行下降动作。另外,机械手能够实现自锁功能,在系统断电断气情况下保持机械手姿势。本文研究的机械手系统工作方式一共有手动操作,半自动操作,自动操作3种模式,当系统上电后机械手首先初始化,然后进行选择相应的工作方式。

3.控制系统的设计

控制系统是机械手设计的重要组成部分,是保证机械手在工作过程中安全可靠的关键。实时控制着机械手的每一个作业动作,控制系统的稳定性以及可靠性的好坏直接决定了机械手工作过程的效率,起着不可低估作用。

3.1 PLC的选用

本文机械手的控制系统根据经验选用“CPU226AC/24输入/16输出”型PLC,另外,由于系统I/O端的分组情况及隔离与接地的需求,需要增加10%~20%的裕量,配置了两个EM253位控模块和一个EM22324VDC数字组合8输入/8输出的扩展模块。本文设计的控制系统,控制面板上操作按钮的输入端应该接入PLC输入口的I0.0-I1.5,系统的行程开关接入I1.6-I2.3,料架上的两个光电传感器应该接入I2.4、I2.5输入口,伺服驱动器的报警端接入I2.6、I2.7接口,伺服电机定位完成后发出的信号接入I3.0、I3.1。其次,PLCQ0.0-Q0.6输出端连接系统信号指示灯,Q0.7-Q1.4端连接外部信号,实时检测机械手状态,Q1.5-Q1.7端连接驱动器,为电机提供电源,Q2.0-Q2.3端连接定位模块,主要控制电机的运转,Q2.4-Q2.5端连接气缸控制阀,调节气缸的伸缩。

3.2 控制模块设计

本文中,控制系统主要由PLC主控单元、I/O模块和EM253位核心控制器构成,机械手的抓放动作由选用的气缸驱动,其余动作由选用的伺服电机驱动,同时电机配有驱动器,由位控模块接收脉冲输入。结构上,系统配有极限行程开关,每个部件的极限运动由脉冲来限位。主控单元采用单独封装,设计为模块式结构,安装在相应的支架上,主要包括PLC模块、触摸终端、I/O模块和两个位控模块,通过PLC专用电缆进行相互通信。位控模块采用的是PLC特殊模块EM253,因为可以运用其产生的脉冲串对电机速度何位置进行开环控制,产生的脉冲串存储在S7-200相应的存储区中,通过扩展的I/O总线与S7-200进行通信。

3.3 控制面板的设计

本文所设计的机械手根据实际应用所需设置以下控制按钮。(1)工作模式选择开关:当正常生产时将机械手调到自动模式,机械手会自动运行。当机械手出现故障或者出现报警时可以将机械手调到手动模式,机械手可通过点动调整。(2)电源开关:当机械手系统准备工作时,必须将电源拨至ON位置,给系统设施供电,其中触摸终端由PLC进行供电。当机械手系统停止工作时,必须将电源拨至OFF位置,切断一切设施供电,保证系统及人身安全。(3)急停按钮:当机械手系统在运行过程中,出现突况例如搬运不够稳定、下放物品不到位、超过了极限位置以及没有抓取成功目标物等等发生时,迫使机械臂系统停止工作,此时仅需按下急停按钮,则可立即使机械手停止工作,有效避免事故的发生和经济损失。(4)机械手上升、下降、左旋、右旋、夹紧、松开按钮:这些按钮通常在调试或者排除系统故障时对机械手进行单步操作时使用,属于手动操作。(5)复位按钮:当需要将机械手系统自动恢复到初始位置的情况时,需要按此按钮实现相应复位功能。(6)启动按钮:当机械手系统完成上电,工作模式等一系列前期准备工作之后,按下此按钮系统就会自动完成预设搬运动作。(7)测试灯/报警按钮:机械手系统安装结束后,要对机械手的作业稳定性进行试验。此时,试灯/报警清除按钮对电路上所有的工作指示灯做检测,保证正式运行时的安全。另外,当机械手系y出现报警时,我们对系统进行故障维修后,必须按此按钮消除报警,使系统进行正常作业。

结语

本文对机械手驱动系统、控制系统方面进行认真细致地研究,能够对生产线上有无工件进行精准判断,降低了工作劳动强度,提高了企业生产效率,对自动化生产线的柔性制造方面和工作效率方面起到了不可估量的作用。

参考文献

[1]蔡自兴.机器人学的发展趋势和发展战略[J].机器人技术与应用,2001,76(4):11-16.

[2]王永华.现代电气控制及PLC应用技术[M].北京:北京航空航天大学出版社,2009.

[3]朱春波.PLC控制的气动上下料机械手[J].液压气动与密封,1999:21-24.

[4]郭艳萍.基于PLC的工业机械手控制系统[J].仪表技术与传感器,2007,9(9):31-32.

[5]李长军.西门子S7-200PLC应用实例解说[M].北京:电子工业出版社,2011.

[6]高安邦,褚雪莲,韩维民. PLC技术与应用理实一体化教程[J].北京:机械工业出版社,2013.

[7]史国生.PLC在机械手步进控制中的应用[D].中国工控信息网,2005.

上一篇:在前行中坚定理想信念 下一篇:一种校园智能餐厅的整体设计