谈高层住宅结构设计

时间:2022-07-21 04:17:11

谈高层住宅结构设计

【摘要】高层住宅作为社会经济发展的产物,其建设要求既安全环保又效益显著的。本文对某高层住宅结构设计进行研究,重点阐述其计算分析及参数的选取,转换层的设计特点,概念设计与构造措施,可供类似工程设计参考。

【关键词】住宅;转换层;结构设计;构造措施

一、工程概况

某住宅区由东、西两区组成,总建筑面积约14.11万m2,地上有6栋32~35层住宅,其中1#、2#楼1~2层为商业裙楼,3~32层为住宅,总高度97.8m;3#楼一层为架空层,2~32层为住宅,总高度97.6m;4#~6#楼1~35层均为住宅,总高度98.2m;地下2层,设置连通地下室作为车库及设备用房使用,其中负2层有部分设有平战结合的核6级、常6级防空地下室。

因本工程平面呈细腰型,腰部应力最集中,而在此处又布置了电梯井道和消防疏散楼梯,开洞较多,对楼板刚度削弱较严重,不利于抗震,是结构设计中值得高度重视的部位。框支剪力墙加落地筒体及部分落地剪力墙结构,属A级高度复杂高层建筑结构。底部设计为规整的大跨度柱网,既可满足地下室停车场和设备用房的使用要求,又为其上的商业裙楼提供了更大的空间。其中1#、2#楼在2层顶部设置结构转换层,3#楼在1层顶部设置结构转换层,转换层以下为框支框架及部分落地剪力墙,转换层以上为剪力墙结构;4#~6#楼为剪力墙结构。上部住宅采用剪力墙结构,其中剪力墙最小厚度200mm,转换层以下剪力墙厚度400~ 700mm,框支柱最大截面800*2300mm,底部加强部位在六层以下,加强部位竖向抗侧力构件采用C50混凝土。1#~6#楼均以地下室顶板作为嵌固端。

二、计算分析及参数选取

采用中国建研院编制的SATWE进行计算,计算参数为:抗震设防烈度为7度,建筑抗震设防类别为丙类,Ⅱ类场地土,基本风压0.9KN/m2(承载力计算)及0.75 KN/m2(位移计算),框支框架和剪力墙抗震等级分别为一级和二级,计算中考虑双向地震扭转效应、模拟施工加载,取18个振型进行计算。

1、侧向刚度计算方法的选取

A:剪切刚度法,即GKi=GiAi/Hi;B:剪弯刚度法,即 Ki=Δi/Hi;C:抗震规范条文说明建议方法(地震层间剪力与地震层间位移的比值),即 Ki=Vi/Δui。其中方法A适用于底层大开间结构;在计算高位转换这类长细柱(墙)结构时,侧向刚度宜采用方法B计算,以充分反映弯曲变形的影响;方法C适用于除A、B以外的规则建筑结构。

2、嵌固端选择的合理性分析

地下室作为地下车库使用,空间大间隔少,其顶板作为上部结构构件的嵌固端,应保证被嵌固构件在嵌固处不会发生平动位移和转动位移。本工程地下室顶板覆土1m,且消防车道部分给予20KN/m2的活荷载,地下室顶板采用现浇梁板框架井字梁结构,主框架梁500*900(消防车道下部分500*110),次梁300*700mm;板厚200mm,混凝土强度等级C30,采用双向拉通配筋,并满足构造要求。结构侧向刚度亦能满足规范要求,因此嵌固端选择在地下室顶板处是合理的。

3、结构自振周期

以3#楼为例,按框支结构经验公式计算,T=(0.05~0.07)N=1.70~2.38s,自振周期值在经验值范围内,扭转周期与平动周期Tt/T1=0.721

4、结构规则性

本工程采用的是竖向抗侧力构件内力由水平转换构件向下传递的形式,属于竖向不规则结构,通过计算、内力调整及构造的方式调整,使其余各项均能满足规范要求:结构在地震和风荷载作用下的层间最大位移转角满足规范要求;最大位移与楼层平均位移的比值满足规范要求;侧向刚度不小于相邻上层的70%和相邻3个楼层平均值的80%;腰部楼板通过构造措施避免尺寸和平面刚度的急剧变化。

三、转换层的设计特点

本工程转换结构构件为梁―柱体系,框支框架抗震等级取一级。框支剪力墙结构剪力墙底部加强部位的高度取六层以下,抗震等级为二级,轴压比限值为0.6,在结构质量不变的情况下, 该部位不落地剪力墙往往不能满足要求,需要特别加厚或加长,为避免转换层上下结构侧向刚度突变,加大落地剪力墙和底部核心筒剪力墙厚度,提高底部竖向构件混凝土强度等级。结合楼层扭转位移控制条件,在平面刚度较弱的周边部位增加布置剪力墙并调整使其对称均匀,避免过大偏心,增强结构的抗扭刚度,结构扭转效应,同时也能提高转换层下部的侧向刚度比。上部剪力墙的水平剪力需要通过转换层楼板传递到落地剪力墙,实现上下层剪力的重分配,转换层楼板传递因竖向不连续产生的水平集中应力,平面翘曲变形显著,因此转换层板厚取 200mm,双层双向配φ12@150结合周边框架梁的布置,转换层楼板整体性得到加强。

结构中转换梁尽量做到一次转换,尽量做到转换梁轴线与上部墙肢轴线相重合,以避免由偏心支承带来的弯剪扭效应对结构延性的降低。对于二次转换、偏心布置和受力复杂的转换构件,施工图阶段补充局部应力分析,在考虑最不利荷载组合情况下得到转换梁的应力分布特点,对高应力区进行重点加强,如提高配箍率和增加抗扭筋的设置,提高转换梁构件的抗剪和抗扭能力。

四、概念设计与构造措施

概念设计比数值设计更重要,先进的设计思想可以通过概念设计得到充分的体现。概念设计是指通过力学规律、震害教训、试验研究、工程实践经验等的设计概念、设计对策和措施 , 它比量化的计算更能有效的从宏观上处理好结构的安全问题,特别是抗震安全。结构抗震概念设计的目标是使整体结构能发挥耗散地震能量的作用,避免结构出现敏感的薄弱部位,地震能量的耗散仅集中在少数薄弱部位,导致结构过早破坏。现有抗震设计方法的前提之一是假定整个结构能发挥耗散地震能量的作用,在此前提下,才能以多遇地震作用进行结构计算、构件设计并加以构造措施,或采用动力时程分析进行验算,试图达到罕遇地震作用下结构不倒塌的目标。

本工程采用合理的建筑结构概念设计,在方案阶段早期介入,并将概念设计贯彻整个设计始终。通过不同结构布置方案的试算和比较,不断调整剪力墙的位置和数量使之趋于合理经济,对结构的薄弱部位采取抗震加强措施,主要包括:提高结构抗震能力,保证框支转换层及以上作为剪力墙底部加强区的部位有足够的承载能力和延性,将转换层以上6层不落地剪力墙混凝土等级提高至C50,降低构件轴压比,增加墙体竖向和水平钢筋,提高构件延性,并适应罕遇地震作用下塑性铰的出现和发展;提高结构抗扭刚度,降低扭转作用,将底部加强层以下两边纵向的剪力墙厚度增大至250mm;加强楼板传递水平力的能力,将细腰部楼板厚度加大至160mm,并提高其配筋率,采用双层双向通长配筋。

五、结束语

综上所述,本工程抗侧力构件结构布置合理,自振周期及剪重比适中,水平位移满足规范限制要求,构件截面取值合理,结构体系具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力,构件设计满足“强柱弱梁、强剪弱弯、强节点弱构件”的原则,对结构可能出现的薄弱部位采取了必要的加强措施,结构体系选择恰当。

参考文献:

[1]何磊.对建筑结构设计中若干问题的探讨[J]. 建材与装饰,2008.

[2] 罗永洪.浅谈住宅工程结构设计[J]. 四川建材,2011.

上一篇:简析绿色建筑设计原则以及绿色建筑设计要点 下一篇:装饰家居创意产品设计