变压器技术诊断

时间:2022-07-17 07:25:40

变压器技术诊断

摘要:定期对油中溶解气体进行测谱分析,可有效诊断出大部分过热性故障和部分发展较慢的放电性故障;局部放电试验可检测出变压器内部可能存在的各种放电性缺陷,以及放电的部位和对绝缘的危害程度;分析变压器绕组的频率响应特性可判断出绕组是否变形或位移。

关建词:绝缘老化故障;色谱分析;局部放电试验;绕组变形

中图分类号:TM835文献标识码:A

文章编号:1009-2374 (2010)24-0057-02

在传输和分配电能时离不开变压器。变压器的作用是改变电压大小,使之满足传输和分配电能时对不同电压数值的需要。变压器在运行中会受到四种电压的作用:正常工频工作电压,短时过电压、操作过电压、雷击过电压,即变压器绝缘要经受这四种电压的考验,此外,还要经受短路电流的冲击等,因此,变压器绝缘会老化和故障,如过热性故障,放电性故障,绕组变形等。如何诊断变压器绝缘是否老化或故障,以及老化或故障的程度如何。一般通过对油中溶解气体的色谱分析、局部放电试验、绕组变形试验。

1变压器油中溶解气体的色谱分析

我国60年代中期就开展了这项技术的研究,并取得了初步成果,自70年代以来,这一检测技术得到了推广和发展。当变压器内部因某种异常原因形成局部放电或局部过热性故障时,油及固体纸张绝缘材料会发生裂解,产生低分子化合物都是气体,他们通常都会溶解在油中,并且随着油的循环扩散到变压器的整个油箱内部。若在变压器运行过程中取油样对这些气体进行分析,就可能发现这些潜伏性故障,溶解气体分析法就是建立在该机理上的。

通过分析油中溶解气体的组分及其在油中的含量和发展趋势来检测设备内部潜伏性故障,了解事故发生的原因,不断地掌握故障的发展趋势,提供故障严重程度的信息,及时报警,合理维护设备,这是油中溶解气体分析的主要任务,一般情况下,根据分析结果进行故障诊断时,应包括下述内容:

(1)判定有无故障。

(2)判断故障的类型。如过热、电弧放电、火花放电和局部放电、进水受潮等。

(3)诊断故障的状况。如热点温度、故障功率、严重程度、发展趋势,以及油中气体饱和水平和达到气体继电器报警所需的时间等。

(4)提出相应的反事故措施。如能否继续运行期间的技术安全措施和监视手段,或者是否需要内部检查修理等,根据色谱分析结果判断变压器故障的根据是《变压器油中溶解气体分析和判断导则》。当变压器油征气体含量超过注意值时应引起注意,并根据“三比值”法初步判断故障的类型和程度。但是潜油泵的故障以及有载开关小油箱向本体漏油,变压器注油过程中真空没掌握好,没有完全脱气等,也可引起油中气体含量分析结果异常,从而误认为变压器内部存在故障,因此应排除它们对色谱的影响。此外,德国的“四比值”法中有一个判据对判断变压器磁回路过热型故障精确率相当高。这个判据为:

当CH4/H2=1~3 C2H6/CH4

但是《导则》推荐的注意值是指导性的,它不是划分设备是否正常的唯一判据,不能作为判断的标准。最终判定有无故障还应根据追踪分析,考察特征气体增长率。有时即使特征气体低于注意值,如突然增长时,仍应追踪分析,查明原因,有的设备因某种原因使气体含量基值较高,超过注意值,也不能立即判定有故障,必须有历史数据比较。如果没有历史数据,则需确定一个适当的周期进行追踪分析。一般说来,仅仅根据吊罩检查修理和限制负荷措施是不经济的。实际判断时,若气体含量绝对值超过注意值且产气率超过注意值时,判定为存在故障。

对于故障检修后的变压器,由于油浸绝缘材料中的残油所残存的故障特征气体,释放至已脱气的油中,在追踪分析初期,往往发现故障特征气体的增长较明显,这时有可能错误判断为故障还未消除。因此,即使检修时油气已充分脱气,在修后的两三个月内,若特征气体增长率比正常设备快些,则应对设备内部纤维材料中残油溶解的残气进行估算。分析所得的气体各组分含量应分别减去残气,才是变压器修复后油中气体的真实含量。

当故障涉及到固体绝缘时,会引起CO和CO2含量的明显增长。《导则》认为,对于开放式变压器,如果总炔的含量超过注意值,而CO含量超过了300ppm,但总烃含量在正常范围内,一般认为是正常的。

色谱分析是诊断变压器工作状态和判断故障性质的最有效的方法之一。它对于检测变压器的内部存在的过热性故障及部分发展较慢的放电性故障比较有效,但对突发性故障,特别是由于匝间短路引起的变压器事故,反应不太灵敏,这是由于突发性故障,产气快,一部分气体来不及溶解在油中就进入气体继电器。因此,对于突发性故障,要结合着对气体继电器中的气体进行色谱分析,并且根据气体的颜色初步定性判断一下,这样综合分析才能得出准确的结论。根据气体继电器中气体的颜色判断故障大致可分为如下几种:

无色、无味、不可燃,是空气。

灰色气体、可燃,是变压器绝缘降低、发热老化产生的气体。

黑色气体、不可燃,是变压器铁心接地、放电产生的气体。

黄色气体、可燃,是变压器内部绝缘过热产生的气体。

2变压器局部放电试验

在电场作用下,绝缘中的部分区域发生电短路的现象,称为局部放电。它常常发生在电气绝缘强度较低的区域或者存在极不均匀电场的部位。对于大型变压器来说,其绝缘结构较为复杂,高电场区的杂物、绝缘受潮、绝缘浸渍不完善、绝缘中含气泡、金属构件与固体绝缘件存在尖角以及结构体中存在悬浮电位等,均有可能导致局部放电。

变压器结构中一旦产生局部放电,将会严重影响变压器的使用寿命和运行性能。变压器油纸绝缘中的局部放电,可分为气泡性放电和油中放电两种。气泡性放电主要是由于绝缘不良,在油中或油纸绝缘中残存的气体造成的,如真空脱气或真空注油没控制好真空度;或者运行中其他原因造成的,其放电强度较低,对绝缘介质有缓慢的老化作用,而油中放电主要是由于绝缘结构中局部场强过高所造成的,其绝缘强度一般要比气泡性放电高几个数量,通常在数千PC以上,强烈是会在短时间内导致油纸绝缘损坏。放电过程中油和纸分解的大量气体,又会产生累积的气泡性放电,加强放电的进一步发展,出现恶性循环的复杂现象,最终导致绝缘完全的击穿。

因此,近年来局部放电检测技术越来越引起人们的重视,得到了广泛的应用。通过大量试验证明,局部放电试验能及时有效的发现变压器设计、制造、运输、安装工艺的缺陷,对于检出变压器的杂质、绝缘受潮、浸渍不完善、含有气泡、金属构件与固体绝缘体有尖角和结构中的悬浮电位等是非常有效的,它与色谱分析相比可以及时地发现变压器内部的局部放电性缺陷,而不需要运行时间的积累。也正是由于制造厂采取了局部放电测试手段,才使得大型电力变压器的制造水平和技术性能越来越高,产品质量也越来越好。

目前普遍采用的局部放电测试方法是在一定试验电压下测试放电量的大小,利用放电量的大小及随电压的变化趋势来评判绝缘的优劣性能。采用这样的方法来评定绝缘内部的缺陷是灵敏和有效的,但如果要较为准确的判断局部放电的程度及对绝缘寿命的影响,最好还是同时测来年感放电量、放电次数等参数,并分析放电的发展趋势和发生部位。

值得注意的是,局部放电量的标准规定值是由经验出发约定俗成的,并没有严格的试验依据,通常认为油纸绝缘在几千PC的放电作用下才会留下痕迹,考虑到放电点与测量点之间信号的衰减,规定数百PC作为变压器放电量的限值。实际上,信号的衰减会受到多种因素的影响,例如:匝间放电时信号衰减较大,当在变压器测量端子上测量值为500PC时,实际放电点上出现上万PC的放电量都是有可能的。因此,在放电量超标时,要对放电进行具体分析,分析可能发生的部位,随加压发展趋势、放电的起始电压和熄灭电压、放电脉冲信号的特征及发生的频率等,并根据分析的结果判断出其对绝缘的危害程度,简单的用标准规定值去卡设备,有时也是不合理的,特别是对已经投入运行的变压器。

综上所述,我们应该在运行中加强对变压器油的监督,结合大小修对变压器定期进行局部放电测量,确保变压器的安全运行。

3变压器绕组变形的测量

变压器在长途运输中受到冲撞或者在运行中受到短路故障电流的冲击,绕组将可能发生变形或位移,严重者会导致突发生事故的发生。通过绕组变形试验就可以在不吊罩的情况下判断变压器绕组是否变形,变形程度如何,从而采取相应的、合理的补救措施,做到防患于未然。

变压器绕组变形或位移后,即使没有立即损坏,也会留下严重的故障隐患,如:绝缘距离发生改变,固体绝缘受到损坏、击穿,导致突发绝缘事故,甚至在正常运行电压下,因局部放电作用而发生绝缘击穿事故;绕组机械性能下降,当再次受到短路电流冲击时,将承受不住巨大的电动力作用而发生损坏事故。因此,积极开展变压器绕组变形诊断工作,及时发现有问题的变压器,并有计划地进行吊罩验证及合理地检修,不但可以节省大量的人力、物力,对防止变压器突发生事故的发生也有极其重要的作用。

4结论

在变压器运行过程中,定期对油中溶解气体进行测谱分析,可有效地诊断出大部分过热性故障和部分发展较慢的放电性故障,但对突发生故障往往不能及时作出反应。

通过局部放电试验,可灵敏地检测出变压器内部可能存在的各种放电性缺陷,并能大致判断出放电的部位及其对绝缘的危害程度,但该方法对过热性故障却很不敏感。

对变压器绕组的频率响应特性进行分析,可方便地判断出变压器在受到短路电流冲击后,或在运输过程中受到冲撞时,绕组是否变形或位移。

上一篇:基于Chord算法的研究与改进 下一篇:一种多端口数据调度算法