张家港市土壤有机质变化趋势及提升对策

时间:2022-07-10 11:38:43

张家港市土壤有机质变化趋势及提升对策

摘要 以江苏省张家港市为研究对象,对比分析1980年和2008年2次土壤普查时土壤有机质的变化趋势。结果表明:2008年的土壤有机质含量较1980年明显增加,有机质的平均含量增加2.2 g/kg。水稻土有机质含量增加的幅度较潮土快,水稻土平均增加了3.8 g/kg,潮土平均增加了1.1 g/kg。同时,对如何提高张家港市土壤有机质的含量提出了相应对策。

关键词 土壤有机质;变化趋势;秸秆综合利用;有机肥;绿肥;江苏张家港

中图分类号 S158 文献标识码 A 文章编号 1007-5739(2016)10-0189-03

土壤有机质是评价耕地质量的重要指标之一[1],是指存在于土壤中的所有有机物质。它包括土壤中的各种动植物残体、微生物体及其分解和合成的各种有机物质[1]。土壤有机质的含量水平对作物的供肥能力、土壤耕性、通气性以及透水性等都有着直接的影响。国内外研究表明,自然环境的改变,肥料施用和轮作方式的不同,都会影响土壤有机质的含量。如果土壤缺乏有机质,则需要较长一段时间才可恢复[2]。因此,研究土壤有机质含量的变化趋势,对掌握当地耕地地力情况有着重要的现实意义。

本项目以江苏省张家港市为研究对象,收集并整理张家港市的相关资料,对比分析1980年和2008年2次土壤普查时土壤有机质的变化趋势,为张家港市测土配方施肥工作提供有效支撑。

1 区域概况与研究方法

1.1 区域概况

张家港市位于长江三角洲平原,江苏省东南部,地理位置为北纬31°43′~32°02′、东经120°22′~120°52′。张家港市总面积998.48 km2,其中陆地面积785.55 km2,占78.67%,长江水域面积212.93 km2,占21.33%。张家港市的土壤发育于全新统海积冲积物和全新统泻湖相沉积物。地貌类型属三角洲平原,地形南高北低。农用土地总面积4.220 3万hm2,其中,耕地3.458 8万hm2,园地0.121 1万hm2,林地0.071 7万 hm2,其他0.568 7万hm2。耕地中灌溉水田2.981 8万hm2,水浇地0.053 5万hm2,旱地0.423 5万hm2。全年平均日照时数为2 133.1 h,无霜期251 d,年平均气温15.2 ℃,年降雨量1 039.3 mm。境内地质属第四系沉积覆盖,覆盖层厚度为90~240 m,是全新统现代沉积。第四系覆盖层的可耕层为2~3 m,耕层下面是砂质黏土、黏土层,厚度为50~70 m;在地面以下70~150 m之间,有细砂层、黏质砂层、中砂层、砾石层;在地面140~240 m以下便是砂岩、灰岩、砾岩层[3]。张家港市共分为八镇两区:杨舍镇、金港镇、锦丰镇、乐余镇、凤凰镇、南丰镇、大新镇、塘桥镇、常阴沙现代农业示范园区、双山岛旅游度假区。

1.2 研究方法

张家港市耕地面积4.092 2万hm2,按照《农业部测土配方施肥技术规范》的要求共设调查采样点2 193个,样点平均代表面积18.66 hm2。共设耕地环境调查采样点557个,样点平均代表面积73.46 hm2。土样于2007年、2008年秋收前后10月中、下旬采集。采样深度为水稻土0~15 cm、潮土0~20 cm。本项目采用重铬酸钾-硫酸溶液-油浴法对样品进行分析。

2 结果与分析

2.1 土壤有机质的现状和空间分布

据2 193个耕层土样的化验分析,土壤有机质平均含量22.2 g/kg,按第2次土壤普查时的分级标准,处于较高水平的下限。其中,>25 g/kg的样品占27.2%,20.1~25.0 g/kg的样品占33.3%,15.1~20.0 g/kg的样品占31.9%,12~15 g/kg的样品占5.7%,

在不同土壤类型地区,土壤有机质的含量具有明显差异,表现为水稻土区土壤有机质的含量高于潮土地区(表1),水稻土区有机质平均含量25.9 g/kg,高于潮土区的20.4 g/kg。

土壤有机质含量在不同行政区域间也有较大差异,有机质含量最高的是塘桥镇,平均为26.75 g/kg;含量最低的是乐余镇,平均18.29 g/kg。土壤有机质由高到低在镇间的排列次序是:塘桥、凤凰、金港、杨舍、现代农业示范园区、大新、锦丰、南丰、乐余(表2、图1)。

2.2 土壤有机质的变化趋势

与1980年土壤有机质的含量相比较,土壤有机质含量呈现出逐年上升的趋势,2008年土壤有机质的平均含量较1980增加2.2 g/kg。对1980年和2008年土壤有机质采用插值法处理的结果表明,绝大部分面积土壤有机质含量上升了0~5 g/kg,约有8 000 hm2的土壤面积上升了5~10 g/kg,占土壤总面积的10%,仅较小面积的土壤有机质有轻微的降低。水稻土有机质含量增加的幅度较潮土快,水稻土平均增加了3.8 g/kg,潮土平均增加了1.1 g/kg。潮土中有机质含量在20~25 g/kg的土壤面积上升了5.78%,水稻土中有机质含量大于25 g/kg的土壤面积上升了27.15%(表3、图2、图3)。

耕作制度和土壤有机质变化对土壤有机质含量的有着重要的影响。据对153个相同采样田块1980年、1996年、2008年3个不同年份有机质含量的分析统计,平均含量分别为19.2、19.5、1.2 g/kg,表现为稳定上升的趋势。

但在不同土壤类型的年份之间具有显著差异,潮土区101个田块,3个年份土壤有机质平均含量分别为17.3、17.0、18.7 g/kg,1996年比1980年下降0.3 g/kg,其中有机质下降的57个田块,占56.4%;1996―2008年,扭转了土壤有机质下降的趋势,平均含量反比1996年增加了1.7 g/kg,有机质下降的田块数也减少到35个,占34.7%(图4)。

其原因主要是从1982年开始,该区有3个镇的耕作制度长期实行麦棉轮作,不利于土壤有机质的积累。1996年以后,种植模式发生变化,增加了水稻种植,实行水旱轮作,对提高土壤有机质的含量发挥了重要作用。

水稻土区由于长期实行稻麦轮作,加上该区农业机械较配套,多年进行麦秸秆全量机械化还田,对土壤有机质的积累更为有利,因此,土壤有机质含量的上升幅度和平均值都明显高于潮土区。52个田块平均,1980年有机质含量23.0 g/kg,1996年上升到24.2 g/kg,2008年又上升到26.2 g/kg。从土壤有机质上升的幅度比较,1996―2008年的12年间,有机质含量的平均值增加了2 g/kg,多于1980―1996的16年增加值1.2 g/kg(图4)。

其原因是前16年秸秆还田的方法以传统的人工方法为主,秸秆的还田数量和面积受到限制;后12年农业机械化水平的提高为增加秸秆还田的数量和范围提供了条件,所以土壤有机质含量上升的幅度也增大。

3 结论与对策

土壤有机质对培育土壤地力具有极其重要的作用,是土壤养分库的重要部分,提供作物生长所需的多种养分;可促进土壤团粒结构的形成,改善土壤物理性状;能提高土壤的保肥能力和缓冲性能,防止土壤养分流失和调节土壤酸碱性;具有吸附和络合作用,防止某些金属离子对作物的毒害和DDT等残留农药对农产品的污染等。在当前的新形势下,增加土壤有机质的技术措施主要有抓好秸秆还田和推广使用商品有机肥、绿肥。

3.1 结论

根据2193个耕层土样的化验分析结果表明,20世纪80年代以来,土壤有机质含量呈显著上升趋势。与1980年土壤有机质的含量相比较,2008年的土壤有机质含量明显增加,有机质的平均含量增加2.2 g/kg。水稻土有机质含量增加的幅度较潮土快,水稻土平均增加了3.8 g/kg,潮土平均增加了1.1 g/kg。

3.2 对策

3.2.1 稻麦秸秆全量连茬机械还田。麦秸秆全量机械化还田,对土壤有机质的积累是一个非常有利的过程。张家港市作为江苏省秸秆综合利用示范县,常年推广“1+X”秸秆综合利用模式,以秸秆机械化全量还田为主,同时积极探索秸秆肥料化、能源化、饲料化、基料化、工业原料化等多种利用形式。①旱耕(犁旋)水整秸秆还田作业。技术路线:联合收割机适当留茬收获小麦、麦秸秆切碎匀抛施基肥(增施氮肥)旋耕机旱作灭茬还田(犁旋一体复式机还田作业)放水泡田平田整地水稻机插秧。作业要求:要求联合收割机收割留茬≤15 cm,秸秆切碎≤10 cm,并均匀抛撒于田间,旋耕机作业深度≥15 cm(犁耕深度≥22 cm)。机具配备:联合收割机加装相应的秸秆切碎抛撒装置;一般采用51.45 kW 以上拖拉机,匹配相应幅宽的旋耕机(犁旋一体复式机)、秸秆还田机械(水田埋茬耕整机)。②水耕水整秸秆还田作业。技术路线:联合收割机适当留茬收获小麦、麦秸秆切碎匀抛施基肥(增施氮肥)放水泡田水田秸秆还田机耕整地(2遍作业)水稻机插秧。作业要求:要求联合收割机收割留茬≤15 cm,秸秆切碎≤10 cm,均匀抛撒于田里,秸秆还田机作业深度≥15 cm。机具配备:联合收割机加装相应的秸秆切碎抛撒装置;一般采用51.45 kW 以上拖拉机,匹配相应幅宽的秸秆还田机械[4-10]。

秸秆还田用机械化全程作业,有效地解决了农村季节与劳力紧缺的矛盾,确保了农村其他产业发展所需的劳力,促进农村经济的发展。同时,秸秆采用机械化还田突破了传统人工还田还草量只能达到22.50~33.75 t/hm2的范围,实现了稻麦秸秆全量就地还田,提高了还田质量,并且有效地解决了农村多余秸秆对环境带来的污染。

3.2.2 麦子(油菜)套播水稻秸秆自然还田技术。从2000年开始,在借鉴扬州地区超高茬麦套稻技术的基础上,进行了连续的应用研究,取得了较理想的效果。水稻免耕套播技术的社会效益表现在有利提高耕地的复种指数,节约水稻生产的秧田用地,使复种指数提高7%~10%;简化了水稻生产农艺,减轻了劳动强度又大大地节约了生产用工;减去了土壤机械耕作,有利于节约能源。

生态效益表现在有利于水稻前茬小麦、油菜秸秆的全量自然还田,使秸秆中的养分重新进入农田生态系统,参与再循环,提高土壤有机质,改良土壤理化性状;并有利于防止土壤水土流失,保护农田生态系统;另外,由于免耕套播的施肥量比常规移栽节约了31.2%,也同时减轻了化肥使用带来的面污染。因此,水稻免耕套播技术也是一项有利于自然生态保护的技术。

3.2.3 大力推广商品有机肥。商品有机肥是有机肥的一种,是将畜禽粪便经堆制发酵加工而成。商品有机肥含有植物所需的各种大量营养元素、微量元素和有机质,有机质中的氨基酸、酰胺和核酸可以直接被植物吸收,有机质中的糖类和脂肪是土壤微生物生命活动的能源[4]。

以青菜施用情况为例。青菜施用商品有机肥3 t/hm2,其产量较单独施用化肥有所增加,增幅在9.94%~29.2%。施用商品有机肥能够有效地降低作物中硝酸盐的含量,提高作物安全品质。

在张家港市,每年至少推广商品有机肥8 500 t,主要施用于经济作物,少量施用于水稻和小麦。其主要原因是张家港市稻麦种植面积较经济作物甚广,而施用商品有机肥的人工成本相对较高。综合比较,施用在水稻小麦方面的商品有机肥则较少,这一定程度上影响了稻麦体系的土壤有机质含量。对此,更应该大力推广商品有机肥在稻麦田块的施用,并且大力发展机械化施肥技术。

3.2.4 大力推广绿肥施用技术。绿肥是一种很好的生物肥料,翻压后可以丰富土壤有机质,改善土壤物理性状,富集土壤中养分,提高碳素营养,防止土壤侵蚀和养分流失,防止植物病害和有害的生物和化学的影响[5]。长期施用绿肥等有机肥能提高土壤松结态腐殖质、稳结态腐殖质以及紧结态腐殖质含量。而单施化肥不但不利于土壤有机质的保持,而且容易造成土壤原有有机质品质的恶化,使土壤有机质逐渐老化,不利于调节土壤中的养分供应。

自2009年,张家港市已连续7年推广绿肥项目。经过大力开展科普宣传工作以及鼓励农户种植,绿肥提升农产品品质、节肥增效等重要性性已深入人心,不少农户主动种植。为了进一步做好推广工作,助力生态农业建设,张家港市每年保持种植蚕豆、黄花苜蓿666.67 hm2以上。同时,免费发放种子至各镇,并且跟踪绿肥种植情况,确保黄花苜蓿等绿肥生长正常,为绿肥种植面积的不断扩大提供保障[11-15]。

4 参考文献

[1] 杨景成,韩兴国,黄建辉,等.土壤有机质对农田管理的动态响应[J].生态学报,2003,23(4):787-796.

[2] 曾招兵,汤建东,刘一峰,等.广东耕地土壤有机质的变化趋势及其驱动力分析[J].土壤,2013,45(1):84-90.

[3] 张家港市年鉴[M].北京:方志出版社,2008.

[4] 刘秀梅,罗奇祥,冯兆滨,等.我国商品有机肥的现状与发展趋势调研报告[J].江西农业学报,2007,19(4):49-52.

[5] 沈洁,陆炳章.绿肥对土壤有机质的影响[J].土壤,1989(1):32-34.

[6] 王应,袁建国.秸秆还田对农田土壤有机质提升的探索研究[J].山西农业大学学报(自然科学版),2007(增刊2):120.

[7] 陈敏智,钟文挺,谢丽红,等.耕地土壤有机质提升方法探讨[J].四川农业科技,2015(5):45-46.

[8] 陈能柱.高台县土壤有机质提升现状与发展对策浅析[J].农技服务,2016(3):118-119.

[9] 蒋毅敏.桂林市提升土壤有机质技术简报[J].广西农学报,2009(4):53-55.

[10] 刘宏伟,薛兆银.固镇县土壤有机质现状及提升措施[J].现代农业科技,2012(9):300-301.

[11] 杨世琦,张爱平,杨正礼,等.黄土高原果园土壤有机质变化趋势分析:以陕西省为例[J].水土保持研究,2009(1):27-31.

[12] 杨世琦,张爱平,杨淑静, 等.典型区域果园土壤有机质变化特征研究[J].中国生态农业学报,2009(6):1124-1127.

[13] 徐艳,张凤荣,汪景宽, 等.20年来我国潮土区与黑土区土壤有机质变化的对比研究[J].土壤通报,2004(2):102-105.

[14] 牛灵安,郝晋珉,张宝忠,等.盐渍化改造区土壤有机质变化与培肥系统研究[J].中国农业大学学报,2003(增刊1):26-30.

[15] 王改兰,段建南,李旭霖.长期施肥条件下土壤有机质变化特征研究[J].土壤通报,2003(6):589-591.

上一篇:泡泡青在随州市的气候适应性研究 下一篇:设施葡萄立体栽培模式与经济效益分析