基于本体的产品设计知识表示方法

时间:2022-06-08 04:04:06

基于本体的产品设计知识表示方法

文章编号:1001-9081(2012)01-0206-04 doi:10.3724/SP.J.1087.2012.00206

摘 要: 针对产品设计知识的多样性、动态化和相关性等特点,提出了一种基于本体的产品设计知识表示方法。建立了以客体、概念集、属性集、命题集和函数集为核心的知识单元,并设计了五者之间的联系,在此基础上引入了输入输出模块,以增强产品设计知识表示的全面性和灵活性。最后以圆柱形螺旋弹簧设计为例,验证了所提方法的有效性。

关键词:

知识表示;本体;设计知识;知识单元;产品设计

中图分类号: TP182 文献标志码:A

Abstract: According to the diversity, dynamics and correlation of product design knowledge, this paper put forward a knowledge representation method for product design based on ontology, established a knowledge unit with the core of object, concept set, property set, proposition set and function set, and designed the links between them. On this basis, this paper introduced input and output modules to enhance the comprehensiveness and flexibility of product design knowledge representation. Finally, the paper took cylindrical spiral spring design as an example and verified the effectiveness of the proposed method.

Key words: knowledge representation; ontology; design knowledge; knowledge unit; product design

0 引言

现代产品设计以设计知识为基础,新产品的设计开发大多依赖已有的设计知识。设计知识的组织、重用可以有效降低设计成本,提高产品开发速度,增强企业市场竞争力。知识表示直接影响到知识组织重用的效率和质量,是进行设计知识组织和重用需解决的首要问题。如何面对设计知识的多样性、动态化和相关性特点,对知识进行有效表示,是企业和研究机构面临的复杂问题[1]。

目前关于产品知识表示的方法主要有产生式表达法、框架表示法、面向对象表示法和基于本体的表示法等。相对于其他方法,基于本体的知识表示方法能够保证在传递共享过程中知识理解的唯一性,并且满足设计知识类型多样、语义关系复杂的要求,已成为知识表示的主要方法之一。国内外学者对于本体知识表示的研究主要集中在设计知识检索重用和产品知识库的设计等方面:Bock等探索了结合本体和基于模型技术进行协同设计的方法[2];Brandt等综合本体表示模式和过程数据仓库提出了对设计过程知识进行管理的方法[3];Kim等提出了将本体用于异构和分布式设计的方法[4];张善辉等提出了基于本体的机械产品知识嵌入机制[1];石鑫等提出面向重用的本体构建方法和领域本体知识设计模型[5];毕鲁雁等提出了基于本体的产品设计知识库设计及其检索方法[6]。上述方法存在的主要问题是:现有的基于本体的设计知识封装方法,知识单元的设计不包含支持输入输出相应功能的模块,难以全面有效地表示产品设计知识信息。

本文在现有研究基础上,提出了基于本体的产品设计知识表示方法,构建了产品设计知识单元,并引入了输入输出模块,以支持知识单元与外界进行信息交互,从而更加全面地对产品设计知识进行表示。

1 基于本体的设计知识表示方法

1.1 本体概述

“本体论”(Ontology)原是哲学研究中发展出来,用于研究客观事物存在及其本质和规律的学说。近十年来,本体的研究已经远远超过了哲学的范畴,Gruber于1993年指出本体是概念化(Conceptualization)的一种形式化规范[7]。Borst在此基础上,提出本体是可共享的概念化的一种形式化规范[8]。Studer等认为,本体是可共享的概念化的一种明确的形式化规范,其中概念化是通过标识某个现象的相关概念而得到的这个现象的抽象模型[9]。本体的核心是一个领域内公认的概念实体的有限集合,本体可以实现领域知识规范化,是有效的共享和重用知识的基础。

1.2 基于本体的设计知识表示

国内外学者就本体在不同领域的知识表示应用给出了各自的解释,如Noy等研究人工智能领域的文献后提出,本体是一套关于某一领域概念的规范而清晰的描述,它包含概念(concepts),概念的属性(properties)、属性的限制条件(restrictions)和相关的实例(instances)[10];在知识共享重用方面,Perez等认为基于本体的知识组织包含5个基本的建模元语:类(classes),关系(relations),函数(functions),公理(axioms)和实例(instances)[11];李景提出了在农业信息技术领域,本体作为知识组织的重要手段应该包含以下六个要素:声明(Statement)、公理(Axiom)、概念(又称为类,Concept, Class)、属性(Property, Slot)、函数(Function)和实例(Instance)[12];在产品设计领域,余旭等提出利用“领域本体―索引知识―数据资源”三层结构表达设计知识[13],江伟光等使用了由概念集、属性集、概念实例集、关系集和公理与规则集组成的五元组进行知识本体的表达[14]。

上述知识模型过于封闭,未就知识模型如何与外界进行信息交互提出相应的解决方案。本文在归纳前人对本体在不同领域知识表示研究基础上,给出了本体在产品设计知识领域的表示方法以解决上述问题:知识单元按照本体形式进行设计,知识单元内部应包含设计所需的全部知识、概念、函数和实例等;知识单元以自身属性区别于其他知识单元;知识单元以递归分层方式定义,可以有一到多个父知识单元并继承父知识单元的属性和概念等要素,从而形成树状结构,每一层存储不同的设计知识;同时知识单元可以与外界进行信息交互。本文提出的基于本体的设计知识单元应包含的具体要素如下。

1)客体(Object)。知识单元的核心,是具有现实意义的实体,知识单元内部其他集合均与客体相联系。

2)概念集(Concept Set)。包含人为定义的产品特有的术语集合和分类方法等。

3)属性集(Property Set)。描述了本知识单元不同于其他知识单元的固有特征和功能等,如产品的材料属性,分为数值属性和对象属性。

4)命题集(Proposition Set)。包含知识单元所涉及的公理、定理和定义等。

5)函数集(Function Set)。包含知识单元进行设计所需用到的计算方法、公式等。

6)实例库(Instances)。实例是知识单元的实例,知识单元是实例的单元,是具体的知识单元的表现对象,具有原子性,不可再分,每个实例都有区别于其他实例的属性,以区别不同实例。

7)输入(Inputs)。知识单元可以接受其他知识单元或外界的设计要求参数的输入,以对设计要求进行推理计算。

8)输出(Outputs)。经过知识单元的推理计算,得到设计所需的数据,要将这些信息输出到下一知识单元或外界,以进行下一步的设计。

知识单元可以拥有上述全部要素,也可以只拥有部分要素,以利于知识单元的灵活使用和保证设计知识表达的全面性。

根据以上设计的知识单元要素和产品设计知识的建模要求,建立了知识单元的视图,如图1所示。在知识单元中,将本体核心划分为四大部分,分别是概念集、命题集、函数集和属性集,知识单元可接受外界的输入和对外界进行输出,并可继承一个或多个父知识单元和泛化实例。知识单元包含许多类型的关系,以利于设计知识的表达,其中:1)part_of表示部分与整体的关系;2)attribute_of表示属性关系;3)has_attribute表示包含属性关系;4)kind_of表示继承关系;5)sibling_of表示两元素同类,且具有传递性;6)instance_of表示实例关系;7)use_of表示使用关系。在图1中,客体处于知识单元的中心,具有唯一的名称以用来标识,概念集、命题集、函数集和属性集均直接与客体发生关系,输入和输出与上述集合发生关系且包含相应的参数和值,函数集中的函数由值域、定义域和映射关系三部分组成,并可以使用命题集中的元素。

2 应用实例

本文以弹簧设计为例,根据上文提出的设计知识单元模型,绘制弹簧设计知识单元,截取知识单元片段,如图2所示,并选用对推理能力支持较强的OWL(Web ontology Language)作为本体建模语言对片段进行表示。

在本例中,包含弹簧、圆柱形螺旋弹簧、圆柱形螺旋压缩弹簧客体。其中:弹簧具有概念集,如外形分类和命题集,如胡克定律;圆柱形螺旋弹簧具有属性集,如材料、圈数、直径、中径、曲度系数等和函数集,如物料选择、稳定性验证;圆柱形螺旋压缩弹簧具有实例集,如模型和产品,设计片段包含相应的输入输出。

1)圆柱形螺旋弹簧客体表示。

程序前

圆柱形螺旋弹簧

程序后

上述代码定义了“cylindricalcoilspring(圆柱形螺旋弹簧)”,并说明它是弹簧的一个子知识单元。

2)数据属性的表示方式。

程序前

程序后

表示“diameter(直径)”的类型为float,定义域为“cylindricalcoilspring(圆柱形螺旋弹簧)”。

3)对象属性的表示方式。

程序前

程序后

上述表示定义域是“cylindricalcoilspring(圆柱形螺旋弹簧)”,值域是“Material(材料)”,对象属性为“MaterialPro(材料属性)”。

4)约束的表示方式。

程序前

1

程序后

表示“cylindricalcoilspring(圆柱螺旋弹簧)”具有材料属性,且为必选属性,属性值只能为“Metallic(金属的)”。

5)命题的表示方式。

Java代码如下:

程序前

public class hooksLaw

{

public float k;

public float f;

public float b;

public hooksLaw(float k,float f;float b)

public float calculateLength(float k, float f, float b)

{

return k*f+b;

}

}

程序后

OWL代码如下:

程序前

此处是否缺少了一个“”?,请明确或补充所在的具体的位置。

程序后

表示“Hookeslaw(胡克定律)”,具体弹簧长度的算法在hooksLaw.java中定义,OWL设置一个指向计算方法的属性。

6)函数的表示方式。

程序前

程序后

定义为“cylindricalcoilspring(圆柱螺旋弹簧)”的函数型属性,用以验证稳定性,对于指定的“FreeHight(自由高度)”,利用Java类中的方法进行计算。

7)实例的表示方法。

程序前

程序后

表示一个客体实例“Product1(产品1)”,它的所属的知识单元为“cylindricalcoilcompressionalspring(圆柱螺旋压缩弹簧)”。

8)概念的表示方法。

程序前

程序后

利用枚举类“Appearance(外形)”来表示弹簧的外部形状,它所属的知识单元是弹簧,共有四个元素:“Annular(环形)”、“Acetabular(碟形)”、“Laminar(板形)”和“Sprial(螺旋形)”。

9)输入输出的表示方法。

程序前

1

程序后

表示对“cylindricalcoilcompressionalspring(圆柱形螺旋弹簧)”的输入,用OWL中的无名类定义其中包含的“Activation(激活条件)”并且设置至少有一个输入才能启动此知识单元,这里设置了输入“minload(最小载荷)”和“maxload(最大载荷)”分别为200N和700N,“stroke(行程)”为14mm。输出的表示方法与输入类似,这里不再赘述。

3 系统实现

根据本文提出的基于本体的产品设计知识表示方法,采用Delphi编程语言和SQL Server数据库开发了水轮机设计知识管理平台系统,通过知识单元配置设计任务的知识流,实现了集成化、数字化设计和全面设计知识管理,支持水轮机的开发设计的全过程。系统实现了对知识单元层级树状结构的管理,如图3所示,实现了知识单元节点的管理和单元内主要参数的管理。

以水轮机关键件――推力轴承设计为例,如图4所示,通过指定轴承的绝缘等级、定子接法等参数和上级知识单元的支持,实现了轴承设计的知识化、智能化。

4 结语

本文提出了一种基于本体的产品设计知识表示方法,引入了输入/输出模块,建立了以产品设计知识为对象的知识单元,可以有效支持知识单元与外界进行信息交互,为产品的自动化和智能化设计奠定了基础。圆柱形螺旋压缩弹簧设计实例表明,本文提出的设计知识单元可以有效地组织产品设计知识。最后,基于本文提出的设计知识表示方法,开发了水轮机设计知识管理平台,显著提高产品设计的效率和知识的利用率,实现复杂产品的设计的知识化、智能化。

参考文献:

[1]

张善辉,杨超英,刘震宇.基于本体的机械产品设计知识嵌入方法[J].计算机集成制造系统,2010,16(11):2386-2391.

[2]

BOCK C, ZHA XUANFANG, SUH H-W. Ontological product modeling for collaborative design [J]. Advanced Engineering Informatics, 2010, 24(4): 510-524.

[3]

BRANDT S C, MORBACHB J, MIATIDIS M, et al. An ontology-based approach to knowledge management in design processes [J]. Computers and Chemical Engineering, 2008, 32(1/2): 320-342.

[4]

KIM K-Y, MANLEYB D G, YANG H-J. Ontology-based assembly design and information sharing for collaborative product development [J]. Computer-Aided Design, 2006, 38(12): 1233-1250.

[5]

石鑫,同淑荣,马飞,等.面向重用的设计过程知识领域本体的构建[J].机械设计,2011,28(1):1-4.

[6]

毕鲁雁,焦宗夏,范圣韬,等.基于本体映射的设计知识库搜索方法[J].计算机集成制造系统,2009,15(10):1890-1899.

[7]

GRUBER T R. A translation approach to portable ontology specification [J]. Knowledge Acquisition, 1993, 5(2): 199-220.

[8]

BORST P, AKKERMANS H. An ontology approach to product disassembly [C]// EKAW97: Proceedings of the 10th European Workshop on Knowledge Acquisition, Modeling and Management. Berlin: Springer-Verlag, 1997: 33-48.

[9]

STUDER R, BENJAMINS V R, FENSEL D. Knowledge engineering: Principles and methods [J]. Data and Knowledge Engineering, 1998, 25(1/2): 161-197.

[10]

NOY N F, McGUINNESS D L. Ontology development 101: A guide to creating your first ontology [EB/OL]. [2011-03-12]. .

[11]

PEREZ A G, BENJAMINS V R. Overview of knowledge sharing and reuse components: Ontologies and problem-solving methods [EB/OL]. [2011-03-25]. oa.upm.es/6468/1/Overview_of_Knowledge.pdf.

[12]

李景.本体理论及在农业文献检索系统中的应用研究――以花卉学本体建模为例[D].北京:中国科学院研究生院,2004.

[13]

余旭,刘继红,何苗.基于领域本体的复杂产品设计知识检索技术[J].计算机集成制造系统,2011,17(2):225-231.

[14]

江伟光,武建伟,吴参,等.基于本体的产品知识集成[J].浙江大学学报:工学版,2009,43(10):1801-1807.

[15]

董刚,李建功,潘凤章.机械设计[M].北京:机械工程出版社,2001:326-334.

收稿日期:2011-06-17;修回日期:2011-08-16。

基金项目:

国家自然科学基金青年基金资助项目(51005162);国家863计划项目“云制造服务平台关键技术”项目审批下来了,还没确定编号。

作者简介:

张冬明(1987-),男,河北南宫人,硕士研究生,主要研究方向:知识表示、云制造; 牛占文(1966-),男,天津人,教授,博士,主要研究方向:精益生产、工业工程、云制造; 赵楠(1982-),男,天津人,博士,主要研究方向:云制造; 霍明(1983-),男,山东泰安人,博士,主要研究方向:制造业信息化。

上一篇:面向服务的自适应云资源信息集成软件架构 下一篇:基于商空间理论的非平衡数据集分类算法