光纤传感技术的发展及应用

时间:2022-06-02 07:02:28

光纤传感技术的发展及应用

【摘要】介绍了光纤传感技术的特征、发展及应用,并对促进光纤传感技术更好的发展做出了展望,希望能够为实际工作提供借鉴与启示。

【关键词】光纤传感技术发展应用

引言

光纤传感技术最早出现于20世纪70年代,自从问世以来,就受到广泛的关注和重视,在众多领域得到应用,并起到了良好的效果。今后应该进一步加强研究,推动该技术的发展和创新,使其在实际应用中发挥更大的作用。下面将对该问题进行探讨分析。

1.光纤传感技术的特征

光纤传感技术是―项新兴技术,与光纤通讯技术同为光纤领域的重要技术。光纤传感技术具有自身的显著特征和优势,主要表现为体积小、质量轻,方便使用,在工程、电力、军事等众多领域都有着广泛的应用。同时,该技术具备较强的抗电磁干扰能力,抗腐蚀能力,较高的灵敏度,另外,该技术的测量带宽带,检测电子设备可以间隔很远。正是由于光纤传感技术具有上述多方面的优势和特点,因而满足了众多实际工作的需要,在工程、电力、军事等领域得到了广泛的应用。

2.光纤传感技术的发展

光纤传感技术的主要组成部分为SiOsub/,直径在100um-125um之间,是―种纤维状的光纤通信介质,由外包层和里面的芯所构成。近年来,随着研究的深入和技术的创新,该技术取得了较快的发展,其中比较突出的体现在以下几个方面。

2.1光纤光栅传感技术

该技术是近些年研究的重点领域,在具体应用中,通过测量布喇格波长的漂移实现对被测量的检测。该技术的灵敏度高,容易构成分布式结,在―根光纤内可以实现多点测量,能够应用到对大型构件的实时安全监测,也可以应用于化学、压力、加速度传感中。在实际研究中,主要对核技术的高灵敏度、高分辨率,低成本、小型化等进行深入的研究,目前,随着波长解调技术的发展,光纤光栅传感技术逐渐迈向成熟,部分已经商用化。但仍需进一步加强研究,提高该技术的性能,完善相应的功能,使其发挥更大的作用。

2.2阵列复用传感技术

采用波分复用、空分复用、时分复用等方式,将单点光纤传感器阵列化,实现空间多点的同时或者分时传感。目前应用最为广泛的光纤光栅阵列传感、基于干涉结构的阵列光纤传感技术。总之,该技术能够实现大范围、长距离的多点传感,是大规模光纤传感发展的重要发展趋势。

2.3分布式光纤传感技术

根据沿线光波分布参量,并获取在传感光纤区域内的分布信息,该技术能够实现长距离、大范围、连续传感,反映了光纤传感的发展趋势。就其技术类型来看,主要包括后向瑞利散射、自发拉曼散射、布里渊散射、前向传输模耦合,不同类型具有自身的特点,在具体应用中应该根据需要恰当选择。总之,该技术具备测量的连续性,避免使用大量分立的传感元件,节约了成本。

2.4智能化光纤传感技术

具体表现为:光纤传感与通信技术、计算机技术的融合,实现各种功能的智能化,实现信号获取、存储、传输、处理于一体。该技术在智能材料、环境感知、石油测井等领域受到广泛的关注,它能够实现对周围环境变化的自我判断、自我适应、自我诊断、自我修复等功能,在汽车工业、航空航天、医疗、土木工程等领域有着广泛的应用。

3.光纤传感技术的应用

光纤传感技术具有自身显著的特征,适应了实际工作的需要,在众多领域得到了广泛的应用,具体来说,其应用领域主要包括以下几个方面。

3.1在工程领域的应用

在工程领域得到应用的技术主要有光纤光栅、瑞利散射光时域反射、拉曼光时域反射、布里渊光时域反射、布里渊光时域分析,各种技术拥有自身的特点和优势,适用不同的监测对象。光纤光栅技术在桥梁、隧道的重点部位监测中非常适用,成本适中,并且高速实时,能够取得良好的监测效果。布里渊散射适用于长距离分布式应力监测,大中型建筑工程稳定性监测,拉曼光时域反射适用于建筑物渗漏、火灾的监测。

3.2在其它领域的应用

此外,光纤传感技术在其它领域,例如,电力工业、国防军事、机场安防、火车站安防、复合材料领域、化工领域、医疗领域、石油工业等等,都有着广泛的应用,在实际监测中,应用光纤传感技术具有良好的效果。

结语

光纤传感技术具有自身的显著特征,其应用也越来越广泛。尽管在实际应用中,该技术在众多领域发挥着重要的作用,但仍然不能满足实际工作的需要,今后需弱进一步加强研究。未来进一步研究的方向有:实用化研究、多用途研究、新型传感技术研究、恶劣环境下低成本传感器研究及应用。只有在对这些领域进行深入的研究,并在人力、物力、财力加大投入,才能进一步提高光纤传感技术水平,促进其在工程和军事领域得到更为广泛的应用,发挥更大的作用。

上一篇:基于AUtoCAD2013环境下矩形阵列命令的使用方法 下一篇:基于杉木外观属性的木饰品设计研究