关于车间内取暖方式的探讨

时间:2022-04-30 02:05:03

关于车间内取暖方式的探讨

简介: 燃气红外线辐射供暖的工作原理为:燃烧天然气、液化天然气或液化石油气加热辐射金属管、板或陶瓷板,使其产生直接热辐射和受热房间围护结构内表面和设备等表面的二次辐射及对流换热,为采暖区创造舒适的微气候条件。它也能用于生产工艺性加热,但主要用于供暖。

关键词:燃气、红外线、辐射、供暖。

中图分类号: TE44 文献标识码: A

1、燃气红外线辐射采暖的原理及特点

1.1 燃气红外线辐射采暖的原理

传统的采暖系统,无论是热水锅炉还是中央空调,都是利用热源,通过散热器加热室内空气,依靠空气对流的方式达到采暖目的。在对流采暖系统中,散热设备先将周围环境中的空气加热,再依靠冷、热空气比重不同的物性进行对流换热,从而将整个环境加热到一定的温度。空气对流采暖要求加热采暖空间中的所有空气,空间的长宽、高度、以及建筑围护结构、保温性能、换气率等因素对供热热负荷的影响很大。

燃气红外线辐射采暖则是利用可燃气体在辐射板表面燃烧,将辐射器的表面加热至800~1100℃高温,产生红外线电磁波,以辐射热的形式直接加热物体,辐射采暖不需要以空气为媒介。冬天,尽管室外空气温度低,但人们晒晒太阳,感觉温暖舒适,就是因为太阳产生了红外线热辐射。

红外线是一种肉眼看不见的光线,位于可见光红光光谱之外,波长大约在0.76~1000微米,频率在1013~1014赫之间。红外线是电磁波的一部分,其传播过程称为热辐射,热辐射是这样进行的:辐射源的表面被加热至一定温度,此时辐射源内的电荷质点(如电子)的运动(包括振动和激动),先将热能转换为电磁波的形式。任何物体,无论是无机物还是有机物,分子都在不断的进行伸缩振动和变角振动,当一物体接受到辐射源发出的电磁波后,只要有与振动频率相匹配的分子振动波长,就能吸收红外线电磁辐射的能量,引起分子和原子的强烈共振而使物体发热。当辐射源表面温度不高时,辐射强度小;当表面温度上升时,辐射能量迅速增加。

1.2 衡量采暖效果的基本标准

任何形式的采暖系统中,都有辐射和对流散热的同时作用,单纯以空气温度高低作为衡量采暖效果的标准是不全面的,而应该考虑辐射和对流的热量对人和物的综合作用。例如,虽然大海边各处的空气温度都一样,但遮阳伞下的辐射热较少,显然比暴露在阳光下凉快很多。

可以用一个温度数值来表述人或物体在采暖环境中,受环境辐射和空气对流热交换的综合作用的实际感觉,这个数值称为“实感温度”或“有效温度”。

实感温度可以通过经验公式计算得到:

T实=0.52t内+0.48t平均-2.2℃

式中 T实:实感温度(℃);

t内:室内空气温度(℃);

t平均:四周围护的平均辐射温度(℃);

当室内温度t内为20℃时:

如果采用对流采暖,外墙内表面温度t平均一般比室温低5℃,此时实感温度约为15.4℃。

如果采用辐射采暖,外墙内表面温度与室内温度相差不大,此时,要达到相同的供热效果,即实感温度同为15.4℃,室内空气温度只需17.6℃。

由此可见,辐射采暖与对流采暖相比,室内温度可以低2.4℃。

如果考虑空间高大或室内换气量大等等情况,温度差别将更显著。

由此可见,在辐射采暖环境中,表面看来,室内空气温度虽然较低,但由于辐射热的直接作用以及四周环境有较高的温度,因此人体在这样的环境中,辐射散热大大减少,人的实际感觉比在相同室内空气温度下的对流采暖舒适得多。也就是说,如果保持相同的卫生条件和舒适感,辐射采暖环境中的空气温度可以比对流采暖时低2~3℃。

红外线辐射采暖空气对流采暖

红外线辐射采暖和空气对流采暖的实感温度梯度变化图

1.3 辐射采暖与对流采暖的比较

1.3.1 辐射采暖感觉更加舒适温暖

从室内环境卫生学观点来看,室内水平温差、垂直温差以及外墙表面与室内中央温差,都应该越小越好,采暖引起的气流速度也不应过大。从这几方面看,辐射采暖较之对流采暖更有优势。

对流采暖中,冷热空气以一定的流速不断循环,这对环境卫生和人体舒适感都有一定影响,而辐射采暖则很少引起空气流动。

在对流采暖中,辐射散热量很少,建筑的围护结构只能从室内空气中吸取热量并通过其表面向室外散热,因此,外墙内表面温度肯定比室内空气温度低,大致低5℃左右,人体实际上处于四周温度较低的墙、地面和室内设备形成的“冷辐射”包围之中,人体向这些冷的表面辐射热量,这大大增加了人体的辐射散热量,从而维持不了按比例散热的平衡,因而,人体舒适感较差。而辐射采暖则不同,人体及周围物体都吸收红外线产生的辐射热,周围物体(包括外墙内表面)温度接近于室内空气温度,人体可以从环境表面得到一部分辐射热量,而对外辐射的散热量有所减少,感觉更加舒适。

在辐射采暖的环境中,地面有较高的温度,人体足部感觉较温暖、舒适;而对流采暖时情况正好相反,地面温度较低,达不到加热足部的目的。

热效应快,冷却缓慢,由于辐射采暖利用红外线传热,而红外线与可见光一样都是电磁波的一部分,都以光速传播,所以辐射面一经达到一定温度后,既可供热并解除人体冷感觉。在采暖期间,四周的围护结构,地面以及室内设备,均吸收辐射热量,并蓄存一部分热量,当辐射采暖停止后,这些积蓄热量,开始向环境散热,因此还可以保持一定的热环境。所以辐射采暖起动特别迅速,而冷却却较缓慢,特别适用于间歇采暖如会场、剧院等地方。

1.3.2 辐射采暖比对流采暖更加节能

燃气红外线辐射器特别适用于高大空间、换气量大、局部供暖、间隙式采暖等多种场合,其经济性是十分显著的。

辐射采暖比对流采暖更加节能,主要有以下几方面原因:

建筑热损失小,辐射采暖时建筑热损失较对流采暖时低,主要有几方面的原因:第一是由于辐射采暖时,辐射热直接照射采暖对象,几乎不加热环境中的空气,因此辐射采暖时的空气温度比相同卫生条件下对流采暖时的空气温度低,一般可以低2-30C,因此室内外温差小,所以建筑热损失也较小。第二由于辐射采暖时室内外温差小,所以冷风渗透量也较小。第三由于对流采暖时,室内空气被加热,并形成冷热空气的对流,因此室内空气温度有较大的梯度,屋顶部分温度高,地面附近温度低,一般对流采暖温度梯度约为0.5-1.0℃/米(如图1),而辐射采暖时,辐射热直接向下辐射,地面部分还可以积蓄部分热量,因此室内空气温度梯度小,相应建筑物上部的热损失也较小。

辐射采暖时热量传播,有很强的方向性,可以根据不同的需要,灵活地布置,可以进行全面采暖,也可以在一个很大的空间内,在局部区域进行采暖,甚至可以在室外进行采暖,这是对流采暖难以做到的。

红外线穿过空气层时,除了空气中的三原子气体选择性吸收某种波长的红外线,造成一定衰减外,大部分热辐射都能穿过空气,因此,绝大部分热量可以辐射到需要加热的物体,在相同的实感温度下,因为辐射采暖时人体获得的辐射热量比对流采暖多,所以,此时的室内温度可以比对流采暖时低2~5℃,相应地,室内外温差也减小2~5℃,整个建筑物的耗热量随之减少。

燃气在输送过程中没有什么损失,同时辐射器的燃烧又非常完全,因此整个采暖系统的热量得以充分利用。而传统方式暖气片采暖系统,热源从锅炉引出后,沿途都有热损失,所以热效率较低。

辐射采暖时,空间上部的温度较空间下部的温度略低,这与对流采暖时的“上热下冷”现象不同,因此从外墙和屋顶向室外散失的热量较少。对一些高大空间或通风量大的场合进行供暖,差别尤为明显。据测试,单位面积上,辐射采暖所耗热量约为对流采暖时的0.8倍左右,如建筑空间高于5米,此值仅为0.6,如高于10米,此值仅为0.3,也就是说在高于10米的空间中,辐射采暖耗热量仅为对流采暖的30% 。

辐射采暖的方向性很好,因此可以用于局部采暖。在某些场合,没有必要加热整个空间,只需在要求采暖的地方采用辐射方式进行局部加热即可,而对流采暖则很难做到这一点。

采用辐射采暖,热效应快,而冷却缓慢,在一些间隙式加热场合(指不需要全天供暖的场合),节能效果尤其突出。由于辐射采暖利用红外线传热,而红外线与可见光一样都是电磁波的一部分,都以光速传播,所以辐射面一经达到一定温度后,既可加热人体或设备。在采暖期间,四周的围护结构,地面以及室内设备,均吸收辐射热量,并蓄存一部分热量,当辐射采暖停止后,这些积蓄热量,开始向环境散热,因此还可以保持一定的热环境。所以辐射采暖起动特别迅速,而冷却较缓慢,特别适用于间歇式采暖的地方,如集体食堂、仓库、会场、体育场馆、集体食堂、剧院、温室大棚等。

1.3.3 辐射采暖系统的初投资小

辐射采暖系统结构简单,包括辐射器和控制器两大部分,辐射器本身既是燃烧器又是散热器,只要在燃气管网上接管,并在系统入口安装调压设备即可使用,配套设备少,节约投资。辐射装置一般均安装在建筑物的上部,没有设备间,不占用建筑使用面积。

燃气红外线辐射器体积小、重量轻,常用的热负荷为14Kw的金属网辐射器,每台重12公斤,辐射器可以用软管连接,拆装都很方便,移动也很灵活。如果使用液化石油气为气源,则整个采暖系统可以很方便地移动。只要有天然气或液化气的场所都可以安装燃气红外线辐射采暖系统。

空气对流采暖和辐射采暖的投资比较

1.3.4 辐射采暖系统的其他优点

红外线取暖技术应用在温室大棚、动物养殖中,效果十分明显,类似太阳光的取暖方式,室内不会显得闷热,红外光有助于加快农作物、动物生长,提高动物的产蛋、产奶量。

燃气红外线辐射采暖,不需要热水循环系统,因此,没有冬天防冻的问题,只需在工作时间运行,人员离开后即可停止工作,在一些没有固定工作时间的地方,特别适用。

在湿度较大的地方用燃气红外线辐射器采暖,有降低空气相对湿度的作用。同时由于室内设备在红外线的辐射下,表面温度高于周围空气温度,从而可以避免空气中的水蒸汽在设备表面凝结,而使设备生锈。

1.4 广阔的应用前景

1.4.1 燃气的推广使用为燃气红外线辐射器的使用奠定了基础

就世界范围来看,燃气具有成本低、质量高和环境保护等一系列优点,从1970年以来,其消费量一直以平均2.6%的增长率稳步增长,并正逐步取代煤炭在一次能源中的传统地位。至1995年世界天然气总消费量已达成20930亿m3,在一次能源中所占份额已上升到23.1%。由于环保要求的日益严格,工业结构的重大调整,预测世界天然气消费量将以3%的平均增长率增长,到2010年将达到32220亿m3。

中国燃气工业和世界燃气工业发展相比有很大差距,天然气消费仅占一次能源的1.9%,总体来说,无论从消费总量、消费结构、人均消费量及一次能源中所占份额等哪个指标来看,都只能是处于初级阶段。但是,最近几年,我国环保问题日趋严峻,促进了天然气的推广应用。许多大城市相继推出了煤改气的政策,如北京、上海、西安、天津等城市的天然气管道建设工程都已经完成,这为各种燃气设备包括燃气红外线辐射器的推广应用打下了基础。

1.4.2 用于工业厂房或公用建筑的全面辐射采暖

燃气红外线辐射器可用于多种场合下的采暖,在一些建筑空间很高、体积很大、门窗很多,以及换气量大的工业建筑、民用及公共建筑中,使用热风或暖气片对流采暖方式,达不到设计要求,而且一次投资和运行费较高,采用燃气红外线辐射采暖,不仅采暖效果好,而且比较经济。这一类建筑有礼堂、展览馆、大型厂房、大型农业温室、飞机库、物资仓库、体育馆等。

1.4.3 用于局部及室外采暖

燃气红外线辐射器有一个重要特点是可以用于局部及室外采暖,这是其它采暖方式无法比拟的。

所谓局部采暖就是在一个有限的大空间内,只有某一部分要采暖,而其余大部分无采暖要求。在许多工业场合,如仓库、维修车间、生产流水线等地方,空间很大,但需要采暖的人员位置比较固定,这时采用全面供暖,无疑浪费很大,采用局部供暖十分必要。另外象滑冰馆、游泳馆这样一些体育馆,只要对四周观众席加热就可以了,采用燃气红外线辐z射器,效果很好。

室外采暖则是在一个无限大的空间中,某一个局部区域进行采暖,这种采暖系统中,辐射热起主导作用,对流散热基本上不起作用。室外要求采暖的地方也较多,如体育场主席台、高级宾馆的门厅、露天餐厅等等。

另外,因为辐射采暖可以迅速启停,所以特别适用于一些间隙式加热的单体大空间,如集体食堂、电影院、歌剧院等场所,每天采暖时间有限,大部分时间不需采暖。因为辐射采暖系统比较简单,如果采用液化石油气为气源,则可以方便地拆卸搬运,这又可以适用于一些临时建筑,如建筑工地、野外作业的临时建筑等等。

2、 燃气红外线辐射器

2.1 辐射器

燃气红外线辐射器主要由喷嘴、引射器、控制箱、点火器、稳焰板、辐射板、反射罩等组成。其中辐射板采用国外进口的金属丝网,如图所示:

金属丝网燃气红外线辐射器工作过程如下:

燃气与空气通过引射器,按照一定比例充分混合,进入辐射器内,经混合气分配板均匀分布后,混合气从金属丝网辐射板的微小孔隙中析出,被电子脉冲式自动点火器点燃后,在金属丝网表面充分燃烧,产生800-1000℃的高温辐射源,向外辐射热量。由于金属丝网孔隙很小,因此燃烧火焰很短,只有2-3mm,属于无焰表面燃烧,燃气的燃烬度很高。

金属丝网采用特殊合金材料编制而成,可以保证辐射器不会发生爆燃。

2.2 控制器

控制系统对燃气燃烧系统至关重要,包括控制箱、阀门组、检测系统:

双阀控制

电子脉冲式自动点火

熄火自动保护

当丝网表面燃烧意外熄火后,为防止燃气泄露,燃气电磁阀能够自动关闭

室温自动控制。

3、结论

燃气红外线辐射采暖与传统的对流采暖相比,具有采暖效果好、初投资少、节能、系统简单、安装方便等优点,特别适用于高大空间、换气量大、局部供暖、间隙式采暖等多种场合。在国内燃气得到大力推广的前景下,高大厂房车间燃气辐射采暖方式还是值得我们推广和应用的。

4、参考文献

(1)中国有色工程设计研究院.2003.采暖通风与空气调节设计规范.北京:中国计划出版社出版

(2)机械工业第一设计研究院.1996.机械工厂采暖通风与空气调节设计规范.北京:中国机械工业出版社

(3)李岱森.1998.简明供暖设计手册.北京:中国建筑工业出版社

(4)陆耀庆.1987.供暖通风设计手册.北京:中国建筑工业出版社

(5)周一芳.2005.济南柴油机厂暖通设计方案.重庆:机械工业第三设计研究院

上一篇:关于幼儿园设计问题的思考 下一篇:浅谈市政工程设计概算编制工作