基于肌音信号的仿生手信号采集系统设计

时间:2022-03-19 05:57:01

基于肌音信号的仿生手信号采集系统设计

摘 要:假肢研究的重点是生理信号的提取和对仿生假手的控制。将肌音信号作为假肢控制的生理信号源,现以放大电路和滤波电路为核心,实现了能采集肌音信号的电路系统设计。通过采集软件,将数据导入Matlab进行特征分析,讨论并验证了电路的全部功能,运用该电路采集到了符合要求的肌音信号。该设计是一种实用的肌音信号前端采集电路。

关键词:肌音信号; 采集; 放大; 电路设计; 仿生手

中图分类号:TP274 文献标识码:A

文章编号:1004-373X(2010)09-0136-05

Signal Acquisition System of Prosthesis Based on MMG

MIAO Lu, CAO Wei, WANG Ai-lin, YANG Zheng-yi

(School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237, China)

Abstract: The research of prosthesis focuses on the acquisition of physiological signal and control of prosthetic limbs. A circuit system with MMG acquisition function is realized, which can use MMG signal as physiological signal source of prosthesis control and adopt amplify circuit and filter circuit. Through the signal collecting software, datas can be imported into Matlab for characteristic analysis. All the function of circuit is tested, the required MMG is collected by the circuit. The design is a practical MMG acquisition circuit.

Keywords: MMG; acquisition; amplifier; circuit design; prosthesis

0 引 言

安装假肢是截肢者代偿缺失的运动功能,回归社会的有效手段。假肢研究的重点之一是假肢的仿生控制,尤其是如何采用使用者自身的信号灵活有效地控制上肢假肢。目前用于假肢控制的仿生控制信号主要有人体自身的肌电信号(Electromyogram,EMG)、脑电信号(Electroencephalogram,EEG)和声音信号(Mechanomyography, MMG)等。其中,表面肌电信号由于滞后时间短和抗干扰能力强,仍然是假肢的主要仿生控制信号源[1]。但是肌电信号仍然存在着一些不足之处,因为EMG通常非常微弱(仅μV级),表面电极检测出的肌电信息是一组肌群的募集信息,不能完全反映人脑对某一动作的运动指令,而人体感受到的外电场干扰(如手机信号等)又相对十分强大(达V级),这些因素都影响到肌电信息控制假手的准确性。

与肌电信号相比,肌音信号在肌肉收缩疲劳时仍有更高的准确率[2]。由于肌音信号的传播特性,传感器不需要固定在某些特定的位置上,甚至可以不直接接触皮肤,而且肌音信号还可以在运动肌肉的末梢采集到,尽管信号的幅度已经衰减了[3]。肌音信号受体表阻抗的影响小[4],受外电场的干扰小。最后,采集肌肉声音信号的传感器比肌电传感器便宜很多,信号只需要简单的数字处理硬件(如:DSP)就可以处理。

肌肉收缩时发出的声音可以通过一个简单的实验验证,把拇指轻轻地按住一个耳孔,然后,一边提起肘部一边握起拳头,你会听到一种隆隆的声音,就像远处传来的雷声。科学家开始研究肌肉声音是从1810年开始的,英国物理学家W.H.Wollaston把肌肉发出的声音和车轮在卵石街道上发出的隆隆声响作比较,得到其频率约为20~30 Hz的结论[5]。对于肌音信号的研究是从1980年真正开始的,英国的生物物理学家Oster发现肌音信号强度与肌肉紧张程度成正比。Barry(1986)提出肌音信号可以用于假肢控制,并作出了尝试[6]。Bertrand Diemont等通过利用FFT和MESE对肌音信号进行分析,证实了功率谱方法对分析肌音信号的有效性[7]。Travis W.利用小波分析对非稳定肌音信号进行分析,验证了肌肉进行不同动作时肌音信号存在差异性[8]。Jorge Silva(2005)等通过利用肌音信号模拟肌电信号对假肢进行控制,张合假手正确率分别达到了88%和71%,基本达到了控制假肢的目的[8]。

本文主要从传感器的选择与测试,肌音信号采集电路的设计以及信号的初步处理来介绍实现肌音信号采集的方法,从而验证通过肌音信号控制仿生手的可行性,并且为进一步仿生手控制系统的研究奠定了基础。

1 人体肌音信号的特点

人体肌音信号属于生物信号,主要特点有:

(1) 信号弱。直接从人体中检测到的肌音信号其幅值一般比较小。因此,在处理各种生理信号之前要配置各种高性能的放大器。

(2) 频率低。其频率主要集中在20~30 Hz,一般认为集中在0~50 Hz属于低频信号。因此在信号的获取、放大、处理时要充分考虑对信号的频率响应特性。

(3) 干扰特别强。干扰既来自生物体内,如呼吸干扰等;也来自生物体外,如工频干扰、信号拾取时因不良接地等引入的其他外来串扰等。

(4) 随机性强。生物医学信号是随机信号,一般不能用确定的数学函数来描述。它的规律主要从大量统计结果中呈现出来,必须借助统计处理技术来检测、辨识随机信号和估计它的特征;它往往是非平稳的,即信号的统计特征(如均值、方差等)随时间的变化而改变。因此在信号处理时往往进行相应的理想化和简化。

2 采集电路的设计要求

针对肌音信号的上述特点,对信号采集电路的分析如下:

(1) 找到能够较好地采集肌音信号的传感器,考虑从心音传感器、腿动信号传感器等医学声音传感器入手。

(3) 信号放大是必备环节,而且应将信号提升至A/D输入口的幅度要求,即至少为“V”的量级。

(3) 考虑通过滤波电路来过滤噪音信号。

(4) 信号频率不高,通频带通常是满足要求的,但应考虑输入阻抗、线性、低噪声等因素。

3 信号采集系统的设计

3.1 传感器的选择

传感器是整个硬件系统中最为核心的器件。感受肌肉声音信号最终可以理解为感受肌肉的微震动信号,即将肌肉的震动信号转换为电信号的传感器。传感器的选择遵循以下几点原则:足够的灵敏度和分辨力。肌肉震动为微震动信号,若分辨力不够,则无法捕捉到这个有用信号;若灵敏度不够,则得到的信号会非常微小,不利于后续的信号处理。合适的频率响应特性。一般声音方面的传感器能够响应的最小频率大概在200 Hz左右,而肌音信号的主要频段为0~50 Hz,因此一般的传感器无法达到要求;适当的价格以及尽量简单的电路。

上一篇:有关语音识别技术的研究 下一篇:64位计算技术求解电大尺寸电磁计算问题