otn传输技术论文范文

时间:2023-02-23 06:48:43

otn传输技术论文

otn传输技术论文范文第1篇

1.1OTN分层

OTN作为光层组织网络的传送网络,整体可划分为光通道层、光复用段层和光传送段层三大子层机构,三大子层有机构成一系统建构,组构OTN技术支撑。其中,光通道层又由两部分建构,OTUk和ODUk。OTUk即光通道传送单元,ODUk即光通道数据单元。光通道传送单元和光通道数据单元基本与SDH技术的段层和通道层两部分相对应。所以,从OTN技术本质上来讲,它打破了现存的SDHWDM的传统优势,是对传统的更进一步、提升效能的继承和创新,而且,OTN技术还扩展了对应业务传送需求的组网功能。

1.2OTN优势

OTN技术是对传统组网技术的继承、整合和创新,与已有的SDHWDM等传送组网技术比较,它具有多元优势:多种客户信号封装和透明传输。完美支持多种协议,大颗粒的带宽复用、交叉以及配置。容量的可扩展性较强、强大的开销和维护管理能力。FEC的纠错能力较强、增强了组网和保护能力。

2OTN传输技术在移动网络中的应用

2.1网络组网架构

OTN组网总体网络架构在移动网络建设中存在不同的方式,当前整体分为省际干传送线网、省内干传送线网以及城域传送网3大建构板块。通过3大板块的组网构建,OTN作为一种透明的信息网络传送平台,能够实现多元业务平台提供的多元业务的统一传送。

2.2OTN组网模型

2.2.1省与省之间的干线传送网的组建模式

(1)网络组建的拓扑模式

省级干线能够传送到省际干线传送网旁边的部分省份,光缆网络传输的出口方向只有2个,通过对比得知其它省份光缆网传输的出口方向3个以上,可以根据光缆网络拓扑采用网状式的结构组建OTN传输网,外省的业务接入点通过环网来实现。

(2)网络传输的波道规划

如果一个节点需要担任多方位传输的任务,那么在规划它传输方向的波道时要根据它的业务流量和流向来确定,如果同一条线路使用了两个不同方向的波道要将它们规划到同一个交叉单元中,这样可以有效地避免在外部跳纤来实现通道的连接。

2.2.2省内干线传送网OTN组网

(1)组网拓扑

组网的业务特点:将省会城市的网络节点作为中心,担任汇聚和收集各地市业务节点。光缆网的业务特点:各地市的节点以省会城市的节点作为中心,且分布在各个环线之上。

(2)网络波道规划

ONT网络组织的环形结构有以下特点:省会的城市节点呈现多维状态,而一般的地市级节点只能支持两维。

2.2.3城域传送网OTN组网

城域传送网OTN网络结构不同的组建方式是根据网络规模的大小来确定的,主要分为大规模形式的城域传送网和中小规模形式的城域传送网,下面举例说明。

(1)组网模式的拓扑

从城域传送网的整体来看,它的规模相对较大且核心的节点数量也比较多,整个网络的业务量也大。在这种传输网络中核心层是专门负责提供核心节点之间的中继电路,同时也负责各种业务的调度,且能够实现业务的大容量调度和多业务同时传送的功能。

(2)网络波道规划

核心层和汇聚层可以组建独立的网络,在业务的初期可以根据实际情况只在核心层组建ONT传输网络,在组织网络结构的时候要充分地考虑光缆网络的连通程度和业务的流量和流向,汇聚层采用环形组建形式,每个环可以接到两个核心的节点之上。

3结语

随着我国各个城市发放3G牌照,电信运营商的重组与改革也不断深入,业务全面运营的时期已经来临,因此对网络的传送要求必定提高。OTN技术凭借着自身显著的优势备受移动网络的青睐。

otn传输技术论文范文第2篇

[关键词] OTN 特点;OTN发展过程;组网应用

doi : 10 . 3969 / j . issn . 1673 - 0194 . 2014 . 08. 057

[中图分类号] TN929.11 [文献标识码] A [文章编号] 1673 - 0194(2014)08- 0099- 01

OTN作为一种新技术的诞生,它超越了光域以及传统的电域,是光域跟电域的管理标准。但是在OTN技术中,波长及业务才是其主要的处理对象,并且可以将传送网中的波长推送到其真正的多波长阶段。OTN之所以能够提供如此庞大的传送能量以及完全透明的端到端波长/子波长连接跟保护电信级,是因为其将光域跟电域的优势牢牢地结合到了一起,成为当今网络传送过程中的优秀技术。像这样一个高端的技术,未来世界中其发展以及组网应用是什么,本文将为大家详解。

1 OTN 技术的特点

作为一种新兴的技术,在起初是被大家怀疑、猜测的,但是经过长时间的论证、实践,得到了更大的利用空间,但是每个技术能快速发展不仅仅是因为跟上了时代的步伐,还要有其自身独特的特点跟优势,OTN技术不仅可以保证多种客户信号的隐蔽性,也可以大颗粒调度和保护恢复,除此之外,其自身完善的故障检测能力都是OTN技术得以继续发展的优势。

其中,多种客户信号的隐蔽性是指OTN技术在传输过程中,采用的是异步映射的方式,这样既保障了客户信息的安全,同时也可以使客户信号定时信息呈透明化状态。然而,作为OTN技术中另一优势是它自身的大颗粒调度跟保护恢复。这是因为在OTN中,包含3种形式的交叉颗粒,这种颗粒具有较高的速率,同时高速率状态下可以创造出更高的交叉速率,从而实现了设备的交叉连接的能力,降低制作成本。但是能够使OTN技术稳步发展的另一特点则是由于它本身带有的故障检测能力跟自身完善的性能。

2 OTN技术的发展概述

在OTN中,主要由电域跟光域的功能组成,光的通道层是由客户的业务适配发展演变而来的,并且信号处理的问题也在电域的过程中完成,并且针对不同的信号、不同的地域,实施多业务的适配过程、交叉调度,以及分级复用与疏导、故障定位、保护、监督、OTN的开销插入等基本功能。并且,OTN是以子网通过进行全光形式进行传输,它在其子网的边界位置进行“光—电—光”的相互转化,并且连接一个3R左右的再生器,共同构成整体的光网络。

OTN还延伸到了新的领域并开发了全新的功能,还为宽带传送过程中提供了大颗粒业务以及实现了透明化传输,同时也实现了多域网络、多层网络的保护功能。在OTN技术传送的过程中,按照目前情势,在未来的时间里传输、交换、组网等,都将会是这项技术今后的发展方向。

3 OTN 组网应用

根据目前测试出的OTN拥有的优势,可以确定其主要承载的电路设定在GE颗粒以上。经过全方面的分析,我们发现,在当前所拥有的传送网络的业务以及分层关系的颗粒分布特征,加之不同形态下的OTN设备的存在,将OTN设备充分地应用到长途传送以及城域网传送中,能够发挥其更大的作用。

当前形势下,人们的生活水平越来越先进,通信技术也越来越发达,人们对通信的需求以及要求也越来越多。传送网在传送过程中的业务量也越来越大,加之客户本身的业务颗粒的增加,网络传输过程中存在的一些问题也在逐步地放大。与此同时,为了获得更好的传送速度和传送质量,充分地利用网络空间,这就要求在网络传输节点中提高继电器的利用率,将超大容量作为调度的枢纽。由于嵌入了ASON/GMPLS分布控制平面,同时OTN交叉设备复合了超大容量,所以OTN设备可以提供多种保护恢复方式跟优先级的抢占功能。这就使网络传输的可靠性得到了保障,解决了传输过程中存在的低防御的特点。同时交叉设备的大容量,能够快速开通大颗粒波长的通道业务,提高业务之间的响应速度,节省传输过程中时间的损失。通常状态下我们将宽带信号通过路由器转换信号,使信号成不同的直流,进行利用,然而在信号传输中,使用了线路跟业务支路分离的OUT模式,形成了我们所说的“宽带池”,因而使宽带网络资源得到了充分的利用。同时又经过电交叉对传送波道做新一轮的调整。

4 结 语

作为一种全新的网络传送技术,OTN不仅继承了自身的优势,并且巧妙地在原有基础上进行拓展,成为目前流行的前沿。OTN技术较以前传统方式的网络传送,完善了许多,有其自身特定的核心内容,尽管其还不太成熟,但并没有对光网络传输过程中造成极大的困扰,充分利用它的优势,使光网络传送摆脱传统形式下的信息传送。

主要参考文献

[1]魏涛,张宾.OTN+PTN联合组网模式分析[J].电信科学,2010(7).

[2]王哗,苗臣冠.新一代传送网OTN[J].通信技术,2009,5(42):152—154.

[3]文婷.OTN关键技术的发展和研究[C]//中国通信学会第五届学术年会论文集.2008.

[4]张海懿 ,赵文玉. OTN:成熟的技术和标准为商用铺平道路 [N]. 人民邮电报,2009-11-17.

otn传输技术论文范文第3篇

关键词 中国联通;承载网;传输技术;PTN;MSTP;微波技术

中图分类号TN915 文献标识码A 文章编号 1674-6708(2013)92-0093-02

1 PTN不适合联通“综合业务”承载

当前,联通呈现出多业务综合承载的趋势:其中,最重要的三大业务为固网宽带业务、移动通信、大客户专线;IPTV业务、NGN业务以及其他经济附加值比较高的承载业务在未来的几年将会实现跨越式的发展。

当前基站采用E1/FE混合出口,最适合采用MSTP技术。集合了固定语音业务、2G TDM业务以及3G的TDM和IP混合业务的MSTP网络技术是目前比较成熟的技术之一。同时,PTN业务由于采用了PWE3技术,使得该项业务完成了多项业务(TDM、ATM、Ethernet等)的统一和集合。PWE3(Pseudo Wire Emulation Edge to Edge)技术的本质是端口对端口的双层承载业务技术,属于L2VPN方式的一种。在网络中,两台PE(Provider Edge)采用LDP信令对PW(Pseudo Wire)标签进行自动分发,同时采用RSVP-TE信令对LSP标签进行自动分发。

与SDH技术采用刚性VC通道利用宽带相比,PTN技术通过采用高效统计复用功能、分组化的管道,以“消峰填谷”的方式实现了带宽多重利用,能很好地提升带宽利用率。

但PTN技术存在的缺点使其不适合联通综合业务的承载,只能作为过渡性的解决方案:PTN与当前网络不能完全兼容与连接;不能完全实现VPN规划部署的端口对端口的业务;PTN无法完成动态PW分配业务;PTN技术存在着灵活性、预留量不足的问题;投资和维护成本较高。

2 如何实现MSTP的平滑演进

随着3G数据业务的发展,3G数据的呼唤成本更低,带宽能力更强的网络承载技术,其中,PTN技术是最佳技术备选之一。

目前,联通在新建的接入层上主要使用的是622M环,而之前的155M环也逐步升级为622M环。如果上述升级全部完成,基本可以实现单基站50M带宽的需求,极大的推动了3G网业务中长期跨越式发展。同时,随着接入层带宽的扩容,将导致汇聚层的带宽也需要进行全面扩容,这就需要同时对汇聚层的扩容改造。当然,如果在当前的条件,如果采用分组环和SDH环,那么汇聚层就可以实现分组环的统计复用,这样,及时不进行大规模、全方位的扩容改造,也就是在原有的SDH业务不改变的情况下,实现汇聚层的扩容改造,也就是实现了整个带宽的统计复用。

3 综合承载的新方式:微波

近几年,随着微波技术的广泛运用,使得综合承载有了更多方式进行选择。其中,微波技术的主要特点有:第一,空间传输能力强大,能够在适用各种传播介质;第二,投资回报率较高;第三,后期运行维护较低;第四,可以适用多种环境;第五,可以满足多种业务对传输质量的要求,组网选择余地较大。同时,随着微波技术的广泛使用,也暴露出如下一些问题:第一,传输时,受天气等外界自然环境影响较大;第二,容量较小,难以满足海量传输需求;第三,目前市场微波厂家良莠不齐,导致质量难以保证。正是由于上述客观缺点的存在,微波技术还无法广泛使用,只是集中在无法铺设光钎、传输量较少的地点和客户。

目前市场比较流行的微波技术主要有两种(按接口类型的不同):TDM微波技术、IP微波技术:传统2G业务和固网业务的固定传送管道;IP微波:3G和宽带业务的最佳选择,它采用自适应调制(AM)技术,提供弹性传送管道,容量最高提升4倍。IP微波又可细分为Hybrid微波和Packet微波等。

相较于传统微波,IP微波具有多种传统微波不具备的优势:统一承载性:网络更具弹性;后期维护简单。由于上述原因,采用IP技术的微波技术是联通综合传输承载的新方式。

4 Optical Transport Hierarchy技术广泛使用

由于ALL IP技术的广泛使用,使得Optical Transport Hierarchy 统一了整个传输网。

OTN,新一代“数字传送体系”和“光传送体系”,也叫做OTH(Optical Transport Hierarchy),由G.872系列、G.709系列、G.798系列等ITU-T规范所要求。

OTH技术的处理对象(基础)主要是长波。该项技术既不同于光电传输技术(电域)也不同于数字传送技术(光域),它成为了新时期传送领域的新标准、新规划,使得能够更好地对电域和光域进行统一管理。

4.1电域管理部分

OTN通过保留SDH技术的优势方面,例如:多进程分配、进程监视管理以及进程缺陷定位等,适应电域管理。与此同时,它还通过支持2.5G、10G、40G等大数据的传输,对原有电域管理领域和能力进行了扩展。满足了FEC以及多层次网络连接进程监视的需求,如同步传输映射和定时传送功能等。

4.2光域管理部分

OTN通过将光域进行分层,使波分系统第一次实现了多级复用的标准物理接口,极大的提高了目前市场,不同运营商之间网络连接、兼容的问题。OTN主要将光域一次性地划分为:光复用段层(OMS)、光传送段层(OTS)以及光信道层(OCH)三个层次。通过分层,使得在波长层面实现了网络多进程的管理,同时也满足了光层运行、管理、维护(OAM)的多层次的需求。如何解决管理多层次网络管理的弊端?OTN主用通过实现了带内、带外两个层面的控制管理。

4.3基于ALL IP的BTN宽带网的必然趋势

OTN在对电域和光域进行统一管理时,需要构筑新一代网络基础,创建新的传送技术,比如WDM、ROADM、100G海量传输等,而OTN可以兼容上述技术,成为基于ALL IP的BTN宽带网的必然趋势。

OTH集合了WDM的容量,具有传输距离长、灵活性大和便于管理的优势。其中,OTN支持80个通道,单个通道支持的最大波长宽带为40G,所以整个OTN标准系统的传输量为3200G。OTN系统整合了多维系统、通道无阻塞ODU以及控制平面。OTN系统优势主要体现在以下3个方面:

1)ROADM技术的广泛运用

由于采用WDM技术,OTN技术由于将光域一次性地划分为:光复用段层(OMS)、光传送段层(OTS)以及光信道层(OCH)三个层次。其中,光层的ROADM技术实现了端口到端口的迅速接入。对于电层的管理,主要是通过交叉矩阵完成本地业务交叉使用以及波长的自动变换。LAN SWITCH技术可以完成亿态业务的汇合,进一步提升了网络的利用率。

2)基于ALL IP的ADM技术

OTN技术中的ADM技术是在原GE ADM技术基础上发展而来的,它采用4路协议。其中,实际速率业务汇聚到2.5G波长上,可以实现网络所有IP服务的接入。ADM技术具有网络带宽和灵活性的接入要求,通常将OTN设备扩展到城域汇聚接入层。

3)光层智能化管理

OTN技术采用ASON控制面板,实现了光层和电层业务的统一管理,比如可以自动识别波长、自动建立波长、自动完成相关网络的运营和维护及系统恢复。与此同时,OTH网络,可以兼容leased wavelength、SLA、BOD及OVPN业务,提高了运营商的利润率。

总之,采用OTN技术的新一代宽带网络实现了端口到端口的快速传输,极大拓展了网络服务功能及市场化的能力,极大改善了传统WDM网络速度慢、容量小的问题。采用OTN技术的新一代网络极大拓展了光纤网络上相关业务的适用范围,从而减少了对网络相关设施的数量。通过OTN技术,改善了传统WDM网络投入大、运营成本高、增值服务少的问题,使得提供网络服务盈利能力得到了提升了,极大改善了运营商的投资回报率,也为OTN网络的可持续发展提供了许多机会。

5 GMPLS/ASON技术逐渐广泛使用

如果实现传统光网络中引入动态交换的概念是传送网络和传送技术的一次历史性的重大突破。自动交换光网络(GMPLS/ASON)作为一种新型网络概念,能够自动完成网络连接,它是由内外因双重因素推动产生:一方面当前的数据信息时代的蓬勃发展作为外部因素;传统传输网络自身的缺陷作为内部因素。智能光网络将会是运营商运用的下一代网络基础,它作为自动交换光网络具有高度融合型,能够实现将多种技术融合在一起同步发挥作用。其中,主要有:SONET/SDH技术的功能特性、高效的IP高效率技术、大容量的WDM/OTN的海量存贮以及具有跨时代的网路集中控制软件。同时,智能光网具有可弹性,可伸缩性,可扩展性等优点,从而在降低维护成本的基础上提高网络的运营管理能力。最后,由于自动交换光钎网络技术的广泛运用,宽带数据传输网络实现了实际运用阶段产生了巨大的经济效益。

参考文献

[1]鲁义轩.ALLIP数据通信领域显现国产力量学术期刊.通信世界,2009.

[2]李芸.OTN技术及其在南京电信传送网中的应用研究.学位论文,硕博学位论文,2009.

otn传输技术论文范文第4篇

【关键词】轨道交通通信系统传输系统

城市轨道交通通信系统是一个庞大的系统性工程,它直接为轨道的运营管理服务,是轨道交通的信息传递器和神经系统。作为城市轨道交通的一个综合性系统结构,主要由以下几个方面组成:传输系统、电话系统、视频系统、广播系统等。本论文主要对传输系统做深入剖析。

轨道交通通信系统主要完成三个方面的任务:一,必须保证轨道交通指挥和调度有效进行;二,要为广大旅客传输各种信息服务;三,维护设备和运营管理的服务。通过这三种任务和能力的完成,才能确保整个轨道交通通信系统的正常运转。

一、通信传输系统的功能分析

作为整个城市轨道交通通信系统的“神经”,各种信息都会通过这个“神经”系统的传输。在日常工作中,各种调度信息、电话语音信息、视频信息、自动检票信息等数据的传递都通过传输系统进行。而这些信息都是轨道交通正常运行的必要条件,如果一些信息的传输出现中断就会影响到轨道交通的安全。

当前,国内外所采用的传输技术一般用SDH、OTN等技术,可以兼顾技术的安全稳定性和先进性。这种性能的传输网络还应当具备以下几个方面的特点。第一,先进性。构成该网络的IP技术和SDH技术以及综合端口技术都处于国内外领先水平;第二,容量大。要满足整个城市轨道交通的通信系统畅通无阻必须才有SDH光纤技术。第三,网络自愈。在传输过程中一旦某个环节出现故障,该系统必须能够通过自身自愈功能消除故障和安全隐患。

二、传输系统的关键技术分析

当前,国内外主要传输系统有六种:OTN、SDH、ATM、宽带IP、IPoverSDH与IPoverWDM、以太网技术。这六种技术的特点分别介绍如下。

1.OTN技术。该技术是开放、传输、网络英文首字母的缩写,意为开放的传输网络。因此OTN技术的特点主要为:首先,能够合理利用接口模块处理各种物理接口和各种复杂环境中的通信协议。采用光纤技术,传输距离没有限制;其次对于数据、语音和视频传输具有很多优势;再次,该系统的适应性非常强,能够不断扩展适应各种标准端口的发展。

2.SDH技术。该技术是同步、数字和体系的英文缩写,意为同步数字体系。该系统广受青睐,是目前世界各国普遍采用的技术。SDH技术除了核心网应用以外,还可以灵活的提供需要的2Mbit/s通道。它有非常成熟的标准和产品,安全性、适用性和可用性都非常强,是世界各国电信传输的基础,其兼容TM、REG、DXC等技术模式,并可以在各种模式之间灵活转换。

3.ATM技术。该技术是异步、传输和模式的英文缩写,意为异步传输模式,该模式可以实现不同信息系统之间的传递和转换,例如电话、视频、IP数据等。该技术可以承载各种不同业务和流量之间的划分,并对其分析,实现数据的集成处理。

4.IP技术。IP技术是互联网迅速普及的后果,当前比较先进的IP承载系统有SDH、ATM和宽带IP,其中又以宽带IP为最优。由于轨道通信系网络并非专业地IP业务,其不适合在骨干网络中传输。但是宽带IP将成为未来传输系统的发展趋势。

5.IPoverSDH与IPoverWDM。以IP业务为主的数据业务是当前信息传输发展的主要技术标志。目前,ATM和SDH均能支持IP,分别称为IPoverATM和IPoverSDH,两者各有千秋。IPoverATM利用ATM的速度快、多业务支持能力的优点以及IP的简单、灵活、易扩充和统一性的特点,可以达到优势互补的目的。

6.以太网技术。该技术也是一个重要承载技术,但是与媒体无关,可以透明地将电缆和各种光纤对接。该技术比较适宜处理突发的IP数据流,采用了异步工作方式,具有很好的扩展性能,其速率可以扩展至10Gbit/s。其最大的特点是可以在光线上以最大速度传输,减少网管开支,提高网络结构。

三、传输技术应用及选择

otn传输技术论文范文第5篇

【关键词】OTN技术 电力通信网 组网 应用

随着我国经济、社会的高速发展,对于电力通信网的数字化、信息化和专业化提出了更高的要求。ONT技术作为新兴且相对成熟的技术,能够有效满足电力通信网的数字化、信息化和安全性的需求,同时简化了电力通信网的运行,完善了电力通信网的服务规范,因而得到了极为迅速的发展。

1 OTN技术简介

OTN(光传输网)是基于ITU-T的G.798、G.709和G.872基础上,利用波分复用技术形成的下一代骨干传输网技术,有效提高了通信网在质量和速率等方面的指标,能够更好的满足高速率、长距离的通信数据传输。与传统传输技术相比,OTN技术有效解决了波长问题对于电力通信网的传输问题,克服了WDM网络子波长、无波长业务保护能力差、调度能力弱和组网能力不足的缺点,实现了真正意义上的多波长光网络传输,便于技术处理的便捷性和管理的统一化。

考虑到网络升级的技术性问题和经济性问题,OTN技术能够很好的实现前后兼容,针对RODAM,OTN技术提出了较为完善的互联规范,对子波长的疏导能力和汇聚能力进行了有效的补充。另外,OTN可基于原有的SDH和SONET的管理功能,提高通信协议的透明性和安全性。

2 我国电力通信网的发展现状及其对ONT技术的需求分析

作为电网的重要组成部分,电力通信网对专业性、可靠性有着更为严格的要求。由于我国各地区经济发展的差异性,加之发展能力、环境和地域等因素的影响,导致我国电力通信网的构建和运行存在着较为明显的差异,部分地区已基本实现环网的数字化和光纤化,而少数地区仍需加大电力通信网的建设,更有甚者,部分山区和偏远地区还未落实保证调度电话。总体而言,我国电力通信网的建设呈现出严重不平衡的发展趋势。

利用OTN技术的兼容性,能够有效的解决我国电力通信网发展过程中存在的诸多问题,缩小各地区电力通信网的发展差距,加快我国电力通信网的构建,并极大的提高电力通信网的可靠性。因此,我国电力通信网对于OTN技术有着极大的需求。就未来的发展趋势而言,大颗粒IP业务将是电力通信业务的发展主流趋势,对于带宽和传输可靠性也提出了更为严格的要求,而OTN技术在透明性、速率和质量上的优势,能够便捷的实现任一电气设备的互联和使用。基于ONT技术,能够实现电力通信网建设环境的优化,提升我国电力通信网的建设速度,对不同拓扑结构实现有效的支撑和选择,适应我国电力事业现代化的发展趋势和基本要求。

3 电力通信网中OTN技术的应用

高速发展的电力通信网,日益增加的电力通信业务,对于电力通信网的传输带宽、传输速率和传输可靠性提出了更高的要求。基于技术优势,OTN技术能够在实现不同业务信息传输的同时,有效满足所有的要求,并降低了电力通信网组网的复杂性,提高了电力通信网的灵活性和可靠性。

3.1 组网模式

电力通信网的组网模式大体可以分为:OADM+OTM混合组网、全OTM组网和全OADM组网等多种组网方式。对于全OTM组网方式而言,连接方式以点对点连接方式为主,并能够唤醒WDM网络支持,不同节点间的电中继通过背靠背OTU或中继OTU的方式来实现。由于OTN技术能够较好的对现有通信组网方式提供兼容,因而其在组网模式上有着独特的先天优势。为实现大颗粒业务,通常利用中心节点来进行组网业务的处理。

以厂站组网模式为例,有着较强的节点稳定性,基于自动交换光网络(ASON技术)和OTN技术,能够理想的实现核心业务的承载,由于ASON技术提供了多次断纤的保护,从而确保厂站核心通信网运行的安全性和可靠性,有效杜绝不稳定因素对电力通信网的影响。

3.2 设备选型

对于电力通信网OTN技术应用而言,设备选型是极其关键的项目,直接影响到电力通信网OTN技术的应用效益。充分结合我国电力通信网的组网和运行需求,科学、合理的选用OTN技术和最为合适的设备,才能实现OTN技术优势的最大化发挥。

笔者根据自身多年工作经验,将OTN技术设备选型的注意事项分析和总结如下:

()对于电力通信网的核心层而言,由于其承载了数量庞大、种类繁多的通信业务,因此所选配的OTN设备应当有着理想的光电混合特性。具有光电混合特性的OTN设备,可以满足波长级别颗粒的处理需求,通过电再生技术,在实现信号长距离传输的同时,克服长距离传输的诸多问题。由于所选用的OTN设备有着理想的光电混合特性,可以方便、不大幅增加经济投入的和长距离电力通信网的兼容,从而实现电力通信网组网的简单化。

(2)对于电力通信网的节点层而言,应当选配具有光交叉特性的OTN设备,以满足当前我国电力通信网组网和运行的需求。以骨干厂站运行节点为例,只是实现了节点穿越的操作和网络业务的承载,因而应当基于电力通信网光电层面的角度来选配和应用OTN光电交叉设备,同“电光方式”相比,利用OTN光电交叉设备的转化,要实现更高的通信传输速度,以便于电力通信网有效降低信息传输所产生的能量消耗,同时实现光电事故的有效预防,增强电力通信网运行的可靠性。

3.3 应用方式探讨

电力通信网由于行业的特殊性,承载了类型繁多、数量庞大的IP业务,并实现与上级通信网的汇集,因此必须以OTN技术要求为基础,实现分级传输网的构建和应用。电力通信网若采用OTN技术,基于传输网络层面来说,能够分成骨干、汇聚和接入三大部分,并基于临建的变电站,实现电力通信传输网的构建和应用。应当以OTN技术作为指导,实现各级电力传输通信网到骨干传输网的有效接入和汇集。针对电力通信网的大颗粒业务,OTN技术会选择最为合理的组网方式。以Mesh为例,可以实现光纤资源的最大化利用,并实现组网方式匹配性和灵活性的最大化。总的来说,OTN技术的应用,就是以业务模式向光方向发展和拓展、提升电力通信网传输网传输速率和光纤利用效率、促进电力通信网调度的灵活性、丰富电力通信网承载业务的多样性和可靠性为根本目的。OTN技术所呈现出的多样性和灵活性特点,应用在电力通信网中,可以有效避免单一性对电力通信网应用效率的不利影响。

4 结束语

电力通信网的发展,对于我国电力行业的发展,乃至我国经济、社会的发展,有着极其重要的影响。由于OTN技术当前已相对成熟,且具有较强的灵活性、构成简单,因而能够有效满足我国电力通信网的组网和应用要求。同时,OTN技术极其的兼容性,能够在不大幅增加经济投入的前提下,实现电力通信网的升级和优化。通过其在各级电力通信网中的应用,实现大容量业务的承载,提升电力通信网运行的可靠性和稳定性。这就对我国电力企业提出了更高的要求,必须充分掌握和了解OTN技术的概念、应用和特点,并结合自身特点,予以创新和优化,以便让OTN技术更好的融入和应用到电力通信网中,在确保我国经济社会发展对于电力能源需求的基础上,加快我国电力行业的发展。

参考文献

[1]李曦.OTN技术在本地传输网络应用探讨[J].电信技术,2010(01).

[2]刘玉洁,肖峻,丁炽武,向俊凌,黄曦.OTN最新研究进展及关键技术(本期优秀论文)[J].光通信技术,2009(06).

[3]王晔,苗臣冠.新一代传送网OTN[J].通信技术,2009(05).

[4]朱广心.南方电力通信网的改造方案[J].电力系统通信,2002(12).

作者简介

刘慧慧(1978-),女,安徽省亳州市人。大学本科学历。现为亳州供电公司信通公司通信运维员,主要从事电力通信系统运维工作。

胥玲(1988-),女,湖北省襄阳市人。大学本科学历。现为亳州供电公司信通公司通信专责,主要从事电力通信网建设规划及通信系统运维工作。

作者单位

otn传输技术论文范文第6篇

关键词:PTN;OTN;传输网络

前言:

当代网络最为关键的部分就是网络传输,而网络传输的重点就是快速的数据流量的流通。而在近些年的网络技术发展状况来看,有关网络传输的各大公司,特别是通信公司它们的网络传输要求更为严格。因为由于互联网全民化得发展,导致数据流量的急剧增大,而通信服务和网络服务的全IP化、高带宽化已经发展成为时代的基调。而在面临技术发展的小瓶颈状况下,为适应时代大数据的冲激,必须在现有网络技术的基础上进行创新发展,将现有技术逐步磨合为高质量、高水平、高承载的传输网络基础。在研究中我们发现,所尝试的众多技术组网中,目前的只有PTN和OTN技术可以综合其自身特色和优势,并且能够稳定信道,进行高质量,高速度的网络传输。特别适应如今对数据业务传输速度、质量、安全性的严格要求。

1 关于传输网络的技术概述

1.1 PTN概述

传统的PTN技术在网络连接时统一运用的都是直连链路式的组网模式,这样连接网络的主要优点就是能够将数据传输的成本控制的很低,节约资源和成本。并且在以往低节点利用率上让其得以极大速率上的提升。PTN网络连接的好处还体现在路由的管理效率得到提升以及让我们的带宽扩容业务得到顺利的发展,这样做就有效的减少了业务调度的层次。 PTN运用了直接面向连接的技术,其中的内嵌二层设备组播功能和统计复用功能能够极大的方便进行故障查找和网络数据记录,并且在数据传送和安全性保障方面也有极大的优势。PTN内核IP化是PTN最早出现的原因,这是为了解决大量小颗粒数据业务的收敛和传输,这个技术能够让接入层IP化和适应高强度的突发性状况。PTN传输技术明显的把网络传输和数据优势结合在一起,使各大通信商的在基础网络数据传送方面获得众多的高度赞扬。然而PTN技术虽然好处很多,但是有一个较为明显的问题便是无法在大量大颗粒业务的传输上大显身手,这也就是PTN后OTN的出现原因。

1.2 OTN概述

作为在PTN后出现的技术,其出现的主要原因便是为了弥补PTN在一些地方的缺陷,当然,OTN的技术优势仅仅表现在这些方面。作为新兴的技术,OTN相较于传统的WDM和SDH技术,其在大颗粒带宽的调度和传输上的能力是前两者无法媲美的。所以OTN发展在短短时间内,就成为了带宽大颗粒和数据业务传输网络的技术考虑对象。尤其是城域网级别的传输网,其一般的传输要求就达到了大于等于2.SGb/s。所以,OTN技术才有大展身手的机会。OTN的另一大优点就是将波分复用技术十分合理的运用于网络传输的物理层当中,并且在其优秀交叉连接和开销管理能力,让传输网络的配置更加高端,数据传输质量更优秀,数据传输速度更加快速。

1.3 传输网络现状

在强调互联网IP化发展的今天,新型技术不断出现,而这些技术所面临的现状就是宽带业务在大数据时代的业务激增从而带来的数据流量激增问题。除此之外,有宽带业务中用户带宽需求逐步下沉到接入层,带来的接入层纤芯资源需求的进一步增加到资源不足的问题以及接入层OTN建设时OTN设备性价比居高不下问题。诸如此类许多涉及小但影响大的问题还有很多,何况还有今天的运营商激烈竞争,用户对网络质量的期待,以及网络安全。这一切都需要在今后的技术更新中得以解决和完善。PTN与OTN将会是目前最适合的一个网络传输技术。

2 PTN与OTN联合在传输网络中的应用

2.1 PTN与OTN联合组网的模式

在现今的网络模式中,PTN和OTN基本达到了基础覆盖,在具体的优势领域,两者的作用区分比较明显,就如PTN来说,它对于各大通信运营商的作用体现在了环形和链状系统的应用上。但是为了传输网络的高质量、高速度、高安全考虑,PTN与OTN的联合组网模式分为两种。其一为承载互通,在PTN为基础的网络通路中,加入OTN系统,可以让PTN网络的链路资源的利用率和数据传输速度得到极大的提高,并且还可以科学的运用OTN网络的保护和调度优势,增强PTN网络的生存性。而这样的组网模式也可以让OTN的智能控制系统更加全面、准确、灵活。而且可以通过两者的智能协调,让网络的容错率大大提升。其二便是相互独立的组网模式,此种模式无须赘述,这就是充分利用其各自的优势,在不同的特殊环境中让网络数据传输达到最好的效果。

2.2 PTN与OTN联合组网的优缺

对于组合联网来说,优缺的存在是不可诡辩的事实,何况本身网络组合模式就会带来一系列的通病。对OTN+PTN联合组网来说,其优势在于它有利于地区之间采用适合小颗粒传输的PTN设备对数据的跨界流通进行汇聚,并且PTN让上行落地层设备的链路利用达到极高的利用率。从而可以在主链路运用OTN方式承载,以恰到好处的波分复用解决主干道压力。其劣势就在于技术的组合会导致部分特殊领域中PTN端到端组网的资源控制管理难度变大。而OTN则是在穿越PTN链路时,会无法及时的同步信号。

2.3 PTN与OTN联合组网的注意事项

PTN与OTN联合组网技术以新技术的形态出现,必然有许多的注意事项,其一就是在设备互通性问题上,由于PTN与OTN联合组网需要的就是大容量数据传输,所以一定运用全开放式的系统架构,让数据在客户层和服务层两端能够以最大速度流通。其二就是在时间同步问题上,一定要在各大通信厂商中制定一张通用的,精确的时间同步网,在搭建OTN和PTN组合网络时,运用同一时间节点,让数据传输的及时性和安全性得以保障。并且这也有利于网络的跨界推广和各大厂商的管理协调。其三就是在安全性问题上,网络安全自从互联网之初就一直存在,不管是哪种互联网技术的出现都将是以网络安全为第一位。通俗的而说就是网络安全高于一切,所以对于PTN和OTN组网来说,必须要对网络的安全问题加以保障。在PTN和OTN部署的关键层拥有大量的数据流通和业务调度,所以必须针对其进行端到端或分段保护。

结语

从互联网发展来看,在大型网络技术发展和大数据要求的背景下,我们运用PTN+OTN联合组网的方式进行网络传输能够良好的完成网络IP化的发展。并且通过技术组合和网络的磨合,能够在将来的互联网发展中更好的提升数据传输的高质量化、高速度化,高安全化。然而,对于PTN+OTN联合组网模式来说,其发展时间的确太短,无法确保在今后的网络升级和新型网络要求中有如今这样的良好表现,所以在以后的工作和应用中需要更加注重对未知的问题深入地研究和探讨。以让PTN+OTN联合组网能够越来越成熟,走的越来越远。

参考文献:

[1]谢宝帅,张永军.基于PTN与OTN联合组网的带宽调整机制研究[J].中国科技论文,2012: 1-2.

[2]魏涛,张宾.OTN+PTN联合组网模式分析[J].电信科学,2010, 26(7):132-136.

otn传输技术论文范文第7篇

摘要:随着数据类业务的爆炸式持续增长,基于VC-12/VC-4带宽调度颗粒的同步数字体系(SDH)结合点到点波分复用(WDM)的典型传送网络结构面临着严峻挑战。如何在保持现有传送网络功能的前提下提供大颗粒带宽的传送与调度,成为新一代光传送网亟需解决的课题。光传送网(OTN)技术的出现,解决了大颗粒带宽的传送与调度的难题,同时在光层提供了类似SDH的组网、保护与管理等功能,在继承原有功能的基础上直接弥补了缺陷,是下一代传送网主流技术。由于处于应用初期,如何应用OTN成为目前业界关注的焦点问题。文章在综合分析多种因素的基础上提出了OTN的应用建议。

关键词:光传送网;关键技术;组网;应用

随着传送网络承载的主要客户类型由语音转向数据的变化,基于光同步数字体系(SDH)以VC-12/VC-4为带宽调度颗粒结合点到点波分复用(WDM)多波长传输的网络结构面临着严峻挑战。首先是数据业务量大导致传送带宽颗粒产生的低效适配问题,如对于路由器的千兆比以太网(GE)或10GE接口,若采用目前典型结构来传送,则需要多个VC-12/VC-4通过连续级联或虚级联的方式来映射,适配和传送效率显著降低。其次是WDM网络的维护管理问题。目前的WDM网络主要检测SDH帧结构的B1字节和J0字节等开销,对于信号在WDM网络传输中的性能和告警等功能检测较弱。最后是WDM网络的组网能力问题。WDM网络目前仅仅支持点到点或者环网拓扑,在光域基本没有或支持有限的组网能力。因此,针对这些需求,国际电联(ITU-T)基于光域数字处理尚不成熟的技术现状,从1998年左右开始提出了基于大颗粒带宽进行组网、调度和传送的新型技术——光传送网(OTN)的概念,同时持续对于相关标准进行了规范,截至到目前已经规范了网络结构[2]、网络接口[3]、设备功能接口、管理模型和抖动等。OTN技术是综合了SDH和WDM优势并考虑了大颗粒传送和端到端维护等新需求而提出并实现的技术,相关规范同时涵盖了未来全光网的范畴,是光网络极有发展潜力的新型技术,将在后续的网络中逐渐引入与应用。

1光传送网的技术特征

OTN技术继承了SDH和WDM技术的诸多优势功能,同时也增加了新的技术特征。

(1)多种客户信号封装和透明传输

基于ITU-TG.709的OTN帧结构可以支持多种客户信号的映射,如SDH、异步转发模式(ATM)、以太网等。目前对于SDH和ATM可实现标准封装和透明传送,但对于以太网则支持有所差异。例如对于GE客户,OTN尚未规范具体的映射方式,各设备厂家采用不同的方式实现GE客户透传,导致客户业务无法互通,同时由于10GE接口的规范完成晚于OTN标准框架规范,OTN对于10GE的透明传送程度有所差异,目前ITU-T提出了2种标准方式和3种非标准方式[7],解决了点到点透明传送10GE的问题。

(2)大颗粒带宽复用、交叉和配置

OTN目前定义的电域的带宽颗粒为光通路数据单元(ODUk,k=1,2,3),即ODU1(2.5Gb/s)、ODU2(10Gb/s)以及ODU3(40Gb/s),光域的带宽颗粒为波长,相对于SDH的VC-12/VC-4的处理颗粒,OTN复用、交叉和配置的颗粒明显要大很多,对高带宽客户业务的适配和传送效率显著提升。

(3)强大的开销和维护管理能力

OTN提供了和SDH类似的开销管理能力,OTN光通路(OCh)层的OTN帧结构大大增强了OCh层的数字监视能力。另外OTN还提供6层嵌套串联连接监视(TCM)功能,这样使得OTN组网时,端到端和多个分段同时进行性能监视成为可能。

(4)增强了组网和保护能力

通过OTN帧结构和多维度可重构光分插复用器(ROADM)[8]的引入,大大增强了光传送网的组网能力,改变了目前WDM主要点到点提供传送带宽的现状。而采用前向纠错(FEC)技术,显著增加了光层传输的距离(如采用标准G.709的FEC编码,光信噪比(OSNR)容限可降低5dB左右,采用其他增强型FEC,光信噪比(OSNR)容限降低等多[9])。另外,OTN将提供更为灵活的基于电层和光层的业务保护功能,如基于ODUk层的光子网连接保护(SNCP)和共享环网保护、基于光层的光通道或复用段保护等,但目前共享环网技术尚未标准化。

(5)OTN支持多种设备类型

鉴于OTN技术的特点,目前OTN支持4种基本的设备类型[10],即OTN终端型设备、基于电交叉功能的OTN设备、基于光交叉功能的OTN设备和基于光电混合交叉功能的OTN设备。目前大多数厂家支持的OTN产品主要以OTN终端设备和基于光交叉功能的OTN设备为主,基于电交叉功能和光电混合交叉功能的OTN设备也有部分提供,在具体应用时可根据实际需求综合考虑选择哪种或哪几种OTN设备。

(6)OTN目前不支持小带宽粒度

由于OTN技术最初的目的主要是考虑处理2.5Gb/s以及以上带宽粒度的客户信号,因此并没有考虑低于2.5Gb/s的客户信号。随着OTN客户需求的发展变化,基于更低带宽颗粒(如1.25Gb/s量级及以下)的需求出现,ITU-T也加大研究力度,目前正在根据各成员提案讨论如何规范具体的带宽粒度规格和参数,同时研究基于多种较小带宽颗粒的通用映射规程(GMP)。

2OTN关键技术及实现

OTN技术包括很多关键技术,主要有接口技术、组网技术、保护技术、传输技术、智能控制技术和管理功能等等。

2.1接口技术

OTN的接口技术主要包括物理接口和逻辑接口两部分,其中逻辑接口是最关键的部分。对于物理接口而言,ITU-TG.959.1已规范了相应接口参数,而对于逻辑接口,ITU-TG.709规范了相应的不同电域子层面的开销字节,如光通路传送单元(OTUk)、ODUk(含光通路净荷单元(OPUk))等,以及光域的管理维护信号。其中OTUk相当于段层,ODUk相当于通道层,而ODUk又包含了可独立设置的6个串联连接监视开销。

在目前的OTN设备实现中,基于G.709的帧,电层的开销支持程度较好,一般均可实现大部分告警和性能等开销的查询与特定开销(含映射方式)的设置,而光域的维护信号由于具体实现方式未规范,目前支持程度较低。

2.2组网技术

OTN技术提供了OTN接口、ODUk交叉和波长交叉等功能,具备了在电域、光域或电域光域联合进行组网的能力,网络拓扑可为点到点、环网和网状网等。目前OTN设备典型的实现是在电域采用ODU1交叉或者光域采用波长交叉来实现,其中不同厂家当中采用电域或电域光域联合方式实现的较少,而采用光域方式实现的较多。目前电域的交叉容量较低,典型为320Gb/s量级,光域的线路方向(维度)可支持到2~8个,单方向一般支持40×10Gb/s的传送容量,后续可能出现更大容量的OTN设备。

2.3保护恢复技术

OTN在电域和光域可支持不同的保护恢复技术。电域支持基于ODUk的子网连接保护(SNCP)、环网共享保护等;光域支持光通道1+1保护(含基于子波长的1+1保护)、光通道共享保护和光复用段1+1保护等。另外基于控制平面的保护与恢复也同样适用于OTN网络。目前OTN设备的实现是电域支持SNCP和私有的环网共享保护,而光域主要支持光通道1+1保护(含基于子波长的1+1保护)、光通道共享保护等。另外,部分厂家的OTN设备在光域支持基于光通道的控制平面,也支持一定程度的保护与恢复功能。随着OTN技术的发展与逐步规模应用,以光通道和ODUk为调度颗粒基于控制平面的保护恢复技术将会逐渐完善实现和应用。2.4传输技术

大容量、长距离的传输能力是光传送网络的基本特征,任何新型的光传送网络都必然不断采用革新的传输技术提升相应的传输能力,OTN技术也不例外。OTN除了采用带外的FEC技术显著地提升了传输距离之外,而目前已采用的新型调制编码(含强度调制、相位调制、强度和相位结合调制、调制结合偏振复用等)结合色散(含色度色散和偏振模色散)光域可调补偿、电域均衡等技术显著增加了OTN网络在高速(如40Gb/s及以上)大容量配置下的组网距离。

2.5智能控制技术

OTN基于控制平面的智能控制技术包含和基于SDH的自动交换光网络(ASON)类似的要求,包括自动发现、路由要求、信令要求、链路管理要求和保护恢复技术等。基于SDH的ASON相关的协议规范一般可应用到OTN网络。与基于SDH的ASON网络的关键差异是,智能功能调度和处理的带宽可以不同,前者为VC-4,后者为ODUk和波长。

目前的OTN设备部分厂家已实现了基于波长的部分智能控制功能,相关的功能正在进一步的发展完善当中。后续更多的OTN设备将会进一步支持更多的智能控制功能,如基于ODUk颗粒等。

2.6管理功能

OTN的管理除了满足通用要求的配置、故障、性能和安全等功能之外,还需满足OTN技术的特定要求,如基于OTN的开销管理、基于ODUk/波长的调度与管理、基于波长的功率均衡与控制管理、波长的冲突管理、基于OTN的控制平面管理等等。目前的OTN网络管理系统一般都基于原有传统WDM网管系统升级,除了常规的管理功能之外,可支持OTN相应的基本管理功能。

3光传送网应用分析

随着传送网客户信号带宽需求的进一步驱动、OTN技术的逐渐发展和OTN设备功能实现程度的显著推进,OTN技术如何应用日益成为业界探讨的焦点,也即何时(什么时候)、何地(什么网络层面)、以什么方式(选择什么功能)引入OTN进行组网以及实际应用时存在哪些障碍或缺陷。因此,文章主要从OTN应用时机、OTN应用网络层面、OTN应用功能以及OTN应用关联问题等角度进行分析。3.1应用时机探讨

OTN是否可以很好地引入应用主要应从传送网客户信号的驱动、OTN技术的完善程度、OTN设备的实现程度以及网络运维人员的OTN技术认知程度等多个角度考虑。

首先,目前传送网客户信号主要为IP/以太网,而IP/以太网的高速发展导致大带宽粒度传送与调度的需求增长非常迅速,基于VC-12/VC-4的带宽颗粒的适配与调度方式显然满足不了传送网客户信号对于大颗粒带宽的传送与调度需求。其次,从OTN技术的完善程度来看,虽然目前OTN标准系列还在进一步修订和讨论(如规范ODU0和ODU4颗粒,统一基于超频方式工作的ODU1e、ODU2e容器等等),而OTN的主要标准框架和功能要求已由ITU-T几年前定稿,即使后续部分内容有所更新,但目前的规范内容至少必须要继承和兼容,因此,对于OTN技术目前可以说是基本完善。第三,对于OTN设备的实现程度来看,目前的OTN设备已经基本支持了OTN技术的主要特征,如多速率映射与透明传送、大颗粒带宽的调度与处理、OTN帧结构的开销实现与处理、OTN的组网与保护等,同时实现了对于这些OTN技术特征的管理。因此,从设备实现上而言,OTN设备已经具备了初步应用的功能特征,但具体应用时要根据多种需求综合选择OTN设备相应功能。最后,网络运维人员对于OTN技术认知过程和其他任何新技术一样,都需要一个逐渐了解、深入和掌握的过程。因此,网络运维人员初期对于OTN技术的不熟悉并不是OTN引入与应用的障碍,而应该是OTN应用时所必须要准备的前提条件之一。

因此,从传送网客户信号的驱动、OTN技术的完善程度、OTN设备的实现程度等方面来看,OTN技术的引入与应用目前应该具备了基本的条件,可在综合考虑其他非技术因素的基础上逐步引入与应用OTN技术,以增强传送网络的传送能力与效率,适应客户信号的高速、动态发展。

3.2应用层面分析

由于光传送网络的范畴较大,包括城域光传送网(含核心层、汇聚层和接入层)、干线传送网(省内干线和省级干线)等多个层面。不同网络层面的特点不同,因而是否可以引入OTN技术的结论对于不同网络层面并不完全一致。

对于城域光传送网而言,汇聚与接入层主要是承载的是汇聚型客户业务,客户信号的带宽粒度较小,基于ODUk调度的业务可能性较小,而且OTN目前暂未标准化ODU1(2.5Gb/s)以下的带宽粒度,因此,目前的OTN技术在城域汇聚与接入层引入与应用的优势并不明显。

对于城域传送核心层和干线传送网络而言,客户业务的特点主要为分布型,客户信号的带宽粒度较大,基于ODUk和波长调度的需求和优势明显,OTN技术特点应用的优势比较适宜发挥。

因此,目前OTN技术的引入与应用主要应侧重于城域核心层和干线网络。

3.3应用功能选择

OTN技术的典型应用功能目前可分为3种:OTN接口、ODUk交叉和波长交叉3种。综合考虑客户业务需求、OTN技术完善程度、OTN设备实现程度等多种因素,应在不同的网络层面应选择不同的OTN功能。

首先,在城域传送网核心层层面,由于节点调度与处理要求中等,网络规模较小但调度需求较大,目前一般可根据实际网络的典型需求选择ODUk交叉和波长交叉或者ODUk和波长混合交叉功能,同时提供对于OTN接口功能的支持;后续可根据OTN设备的实现程度选择新型功能。第二,在省内干线层面,由于节点调度与处理要求较大,网络规模较大,调度需求较大,目前一般可根据实际网络的典型需求选择波长交叉或者仅选择OTN接口功能;后续可根据OTN设备的能力的提升和客户业务需求等选择ODUk交叉、波长交叉,或者ODUk和波长混合交叉功能。第三,在省级干线层面,由于节点调度与处理要求很大,网络规模大,调度需求一般,目前一般可根据实际网络的典型需求选择OTN接口功能,特殊需求可局部选择波长交叉功能;后续可根据OTN设备的能力提升和客户业务需求等选择ODUk交叉、波长交叉,或者ODUk和波长混合交叉功能。

3.4应用关联问题

实际引入OTN技术组网时,最典型的关联问题是现有网络如何升级、现有网络与OTN怎么互通以及后续的OTN如何演进等问题。

由于现有WDM网络的彩色接口一般都提供了基于G.709的OTN接口功能,原则上可考虑直接升级或启动OTN接口功能。由于现有WDM设备的OTN接口的支持程度差异较大,而且涉及到现网运营、维护、技术的更新和成本等因素,如何升级为完全支持G.709接口的OTN设备,是个综合多种因素需要深入分析的问题,不同的场景应选择不同的解决方案。

对于互通问题,由于目前的WDM网络支持的G.709接口并不一定完善,因此,新建的OTN网络与已有WDM或者SDH网络互通时,应优先选择客户侧接口(如SDH/以太网等)进行互通,待OTN网络规模逐渐扩大以后,OTN不同子网之间可采用基于OTUk的域间接口互通,逐渐实现端到端的维护与管理。

关于OTN引入和应用后的后续技术演进,应在积累前期运维经验的基础上扩大OTN网络规模的同时,从客户业务需求、OTN技术发展和OTN设备实现程度等多方面紧密跟踪相关进展,以便适时适度地引入更多的OTN新功能,最终实现光传送网络范围内真正意义上端到端灵活的调度、维护与管理,使OTN的应用网络层面覆盖到城域传送网核心、接入与汇聚层以及干线网络。

4结束语

otn传输技术论文范文第8篇

>> OTN网络保护方式探讨 开放式传输网络(OTN)系统保护方式在地铁通信中的应用探讨 OTN技术及应用实例 OTN在城域网中的应用探讨 电力通信组网中OTN技术的应用探讨 试论分组增强型OTN的发展及应用 OTN技术及在城域网中的应用 大客户光缆保护方式探讨及典型应用 OTN 网络中的SNCP保护 OTN在专用传输网干线波分网的运用优势及运用方式剖析 OTN技术发展和应用探讨 OTN系统规划和应用探讨 OTN技术特点及应用分析 OTN技术特点及应用研究 OTN技术组网及应用分析 OTN技术原理及应用分析 OTN――全业务承载策略及应用 电机起动方式的探讨及应用 对广电OTN传输技术的探讨 探讨OTN的关建技术及其在广电传输网中的应用 常见问题解答 当前所在位置: >, telecom operators will be transformed into ICT comprehensive service provider. The richness of business brings higher demand for bandwidth < /view/10821.htm >, < /view/1498515.htm > direct reflection for transport network capacity and performance requirements. Optical transmission Network < /view/1498515.htm > (otns, Optical Transport Network) technology being able to meet the needs of all kinds of new business, gradually walked to the front from behind the scenes, become the main development direction of transmission Network. As the dependence on communication in modern society is more and more big, any network fault may cause incalculable economic losses. Efficient, stable, flexible optical network protection (that is, the network survivability) is a new generation optical network must have characteristics. The existing optical network protection mainly for protection and restoration of two kinds, the former are more widely used. Otns were introduced in this paper and its general protection way, otns protection mode choice is analyzed, and the light of its OTN layer protection mode, the ODUk protection mode and the realization of the OMS Shared protection ring is analyzed.

Key words: otns; Protection mode; Optical layer protection; ODUk protection way; OMS Shared protection ring

中图分类号:TL372+.3 文献标识码:A文章编号:2095-2104(2013)

一、OTN及其保护方式

OTN是以波分复用技术为基础、在光层组织网络的传送网,是下一代的骨干传送网。OTN是通过G.872、G.709、G.798等一系列ITU-T的建议所规范的新一代“数字传送体系”和“光传送体系”,将解决传统WDM网络无波长/子波长业务调度能力差、组网能力弱、保护能力弱等问题。OTN处理的基本对象是波长级业务,它将传送网推进到真正的多波长光网络阶段。由于结合了光域和电域处理的优势,OTN可以提供巨大的传送容量、完全透明的端到端波长/子波长连接以及电信级的保护,是传送宽带大颗粒业务的最优技术。

OTN支持丰富的告警检测、提供专门的APS(自动保护倒 换)开销、支持电交叉矩阵,具备了提供多种保护方式的良好 基础。OTN电交叉连接技术已经成熟,具备商用的条件。OTN光交叉技术由于存在集成度低、网络管理能力弱等特点,还不适合大规模应用。OTN一般保护方式如表1所示。

表1OTN一般保护方式

二、OTN保护方式选择原则

OTN的保护方式非常丰富,在工程应用中,最主要的保护方式有基于业务层的保护,基于光层的OCh(1+1)、OMSP和OLP(1:1、1+1)保护以及基于电层的ODUkSNC(1+1)和ODUkSPRing保护。不同的保护方式特点不同,在选择OTN的保护方式时,一定要分析业务对于保护的需求是什么。一般的规律是: SDH业务(如10Gbit/s、2.5Gbit/s环网业务)采用基于业务层的保护,集中式专线业务(如GE、10GE、2.5Gbit/s专线业务)采用电层ODUkSNC(1+1)保护,分布式专线业务采用电层ODUkSPRing保护。当然,考虑到电交叉单元容量的问题,也可以适当地选用光层的OCh和OMSP保护。在选择OTN保护方式时遵循以下基本原则:

1、网络拓扑结构:不同的保护方式适用于不同的网络拓扑结构。应根据网络的实际拓扑结构选择适宜的保护方式。

2、业务颗粒度:不同的保护方式适用于不同的业务颗粒度。根据目前的OTN设备水平,ODUk SPRing方式主要适用于2.5 Gbit/s及其以下颗粒业务的保护。随着OTN设备水平的不断提高,其电交叉矩阵容量将越来越大。届时ODUk SPRing方式可能会适用于更大颗粒业务的保护。

3、可靠性要求:不同保护方式的保护效果是不同的,应根据业务的可靠性要求选择适宜的保护方式。

4、保护成本:在网络拓扑、业务颗粒度和可靠性要求确定的条件下,应尽量选择保护成本相对较低的保护方式。

三、OTN的保护方式的应用

(一)光层保护方式

1、(1:1)光层保护方式,是由一个备用保护系统和一个工作系统组成的保护网络,系统的冗余度显然为100%。这种设置方式通常用于低阶Path和路由容量较低的系统之中;其收发端的发送机和接收机为成对设置,因而在无故障的情况下,可以用备用保护信道进行优先级较低的通信,借以提高光缆系统的利用率,适用于端到端的保护和业务的保护。业务流量并不是被永久的桥接到工作和保护光纤上,相反,只有出现故障时,才在工作光纤和保护光纤之间进行一次切换。

2、(1+1)光链路保护方式,是由一个备用保护系统与一个工作系统组成的保护网络,与1:1方式不同的是采用了单方向工作的方式,即收发信机本身不设备份,但发射机同时要与主备两个传输系统相连,而接收机则要根据主备通道的质量情况,选择其中之一作为工作信道,并在没有任何故障返回信令的情况下,独立完成保护切换的功能,只能对链路故障中的业务进行保护。这种方法是利用光滤波器来桥接光信号,并把同样的两路信号分别送入方向相反的工作光纤和保护光纤的通道中。保护倒换完全是在光域实现。当遇到单一的链路故障时,在接收端的光开关便把线路切换到保护光纤。由于在这里没有电层的复制和操作,所以除了当发射机和接收机发生故障时会丢失业务外,一切链路故障都可以恢复。

3、(1:N)光层保护结构与(1:1)的保护结构相类似。然而在这里,N个工作实体共享同一个保护光纤。如果有多条工作光纤断裂,那么只有其中的一条所承载的流量可以恢复。最先恢复的是具有最高优先级的故障。

4、M:N方式,资源共享的保护方式,通常采用通道保护方式。是由m个备用保护系统和n个工作系统组成的复用段保护网络;当接收机检出故障以后,需将故障报警信息返回到发射机端,才能实现主备段的保护切换。

(二)ODUk保护方式

ODUk保护分为ODUk SNCP保护和ODUk SPRing保护。

1、ODUk SNCP保护的实现方式

(1)在业务发送方向,需要保护的客户业务从支路板输入,通过交叉单板交叉分成工作信号和保护信号,分别送往工作线路板和保护线路板,然后工作信号和保护信号分别在工作通道和保护通道中传输。

(2)在业务接收方向,正常工作时,仅工作线路板对应的交叉连接生效,断开保护线路板的交叉连接,当工作通道故障时,断开工作线路板交叉连接,保护线路板对应的交叉连接生效,业务信号工作在保护通道。

(3)当工作路由恢复正常后,根据在网管上预先配置的恢复类型,业务信号可以恢复到指定的线路板所对应的交叉连接上。

2、ODUk SPRing保护的实现方式

只需配置主用业务,无需配置保护业务,倒换时需要协议,有节点数限制,保护颗粒为ODUk,实现原理类似SDH中MSP保护。

(三)OTN网络的OMS共享保护环的实现

理论上讲OTN的环保护可以支持OMS共享保护环(OMS SPRING)。其原因是一个ODUk通道的速率至少是2.5Gbit/s,这个容量已经很大,如果再做基于复用段的保护,容量将更大,速率将更高,网络的成本也就更大。随着对网络带宽的需求增加,网络成本的下降,OMS共享环的实现标准将提上日程,以下是OMS共享保护环的实现原理。

OMS共享保护环可分为二纤和四纤双向共享保护环。所有的共享保护环都支持环倒换,四纤OMS共享保护环还支持跨段的倒换。两纤OMS倒换环需要环的每个跨段只有两根光纤。每根光纤即承载工作信道,又承载保护信道。每根光纤的一半信道定义为工作信道,另一半定义为保护信道。一根光纤的工作信道承载的正常业务由环上相反方向传送的保护信道进行保护。这允许正常业务的双向传输。在每根光纤只使用一套开销信道。当一个环倒换发生时,工作信道内的正常业务倒换到相反方向的保护信道。

四纤OMS共享保护环要求环上的每个跨段要有四根光纤。工作和保护信道由不同的光纤承载:互为反向的两个复用段承载工作信道,而互为反向的另外两个复用段承载保护信道。这就允许正常业务的双向传送。由于工作和保护信道不经过相同光纤传送,所以复用段开销既可以走工作信道,也可以走保护信道。四纤OMS共享保护环支持环倒换,也支持跨段倒换,但不能同时进行。由于每个跨段上的保护信道只用于此跨段上的倒换,所以多段的跨段倒换可以在环上共存。某些多故障(如掉电、工作信道光纤被切断等只影响跨段上的工作信道的)能够完全利用跨段倒换进行保护。

结束语

随着现代社会对通信的依赖性越来越大,任何一个网络故障都可能造成难以估量的经济损失,因此必须加强网络保护。目前OTN正处于发展当中,其保护方式也在不断的完善与发展,在实际应用中,应当结合网络环境实际选择合理的保护方式。

参考文献

[1]李文华.OTN技术组网策略分析[A].中国通信学会通信建设工程技术委员会2010年年会论文集[C].2010.

[2]ITU_T G.873.1光传送网(OTN):线性保护

[3]YD/T 1990-2009光传送网(OTN)网络总体技术要求

[4] 中国联通0TN实验室测试总结报告,2011年3月

[5]武文彦.智能光网络技术及应用[M].电子工业出版社,2010.

[6]穆维新.现代通信网[M].北京:人民邮电出版社,2010.

otn传输技术论文范文第9篇

关键词:OTN技术移动城域网应用

中图分类号:TP393.4文献标识码: A文章编号:

引言

随着3G网络的发展以及全业务竞争的加剧,中国移动的业务类型呈现多元化、带宽需求呈现爆炸式增长,可以说电信行业的超带宽时代即将来临。面对大颗粒的带宽需求,传统的城域传送网技术很难满足业务的发展需求,因此组建一种可以实现快速灵活的业务调度、完善便捷的网络维护管理(OAM功能)的传送网络就显得尤为必要,而作为新一代传送网的OTN技术则很好的满足了这一需求。

1.OTN技术的优势

1.1多种客户信号封装和透明传输

OTN可以支持多种客户信号的透明传送,如SDH、GE和10GE等。OTN定义的OPUk容器传送客户信号时不更改其净荷和开销信息,而其采用的异步映射模式保证了客户信号定时信息的透明。

10GE接口相对于10G POS接口具有很大的成本优势,路由器采用10GE接口可以大大降低网络建设成本。而目前基于SDH的WDM系统主要是针对SDH信号的传送,无法实现对10GE LAN信号的透明传送。因此,WDM系统引入OTN接口是路由器采用10GE接口的前提条件。

1.2大颗粒调度和保护恢复

OTN技术提供3种交叉颗粒,即ODU1(2.5 Gbit/s)、ODU2(10 Gbit/s)和ODU3(40 Gbit/s)。高速率的交叉颗粒具有更高的交叉效率,使得设备更容易实现大的交叉连接能力,降低设备成本。经过测算,基于OTN交叉设备的网络投资将低于基于SDH交叉设备的网络投资。在OTN大容量交叉的基础上,通过引入ASON智能控制平面,可以提高光传送网的保护恢复能力,改善网络调度能力。

1.3完善的性能和故障监测能力

目前基于SDH的WDM系统只能依赖SDH的B1和J0进行分段的性能和故障监测。当一条业务通道跨越多个WDM系统时,无法实现端到端的性能和故障监测,以及快速的故障定位。

而OTN引入了丰富的开销,具备完善的性能和故障监测机制。OTUk层的段监测字节(SM)可以对电再生段进行性能和故障监测;ODUk层的通道监测字节(PM)可以对端到端的波长通道进行性能和故障监测。从而使WDM系统具备类似SDH的性能和故障监测能力。

OTN还可以提供6级连接监视功能(TCM),对于多运营商/多设备商/多子网环境,可以实现分级和分段管理。适当配置各级TCM,可以为端到端通道的性能和故障监测提供有效的监视手段,实现故障的快速定位。

因此在WDM系统中引入OTN接口,可以实现对波长通道端到端的性能和故障监测,而不需要依赖于所承载的业务信号(SDH/10GE等)的OAM机制。从而使基于OTN的WDM网络成为一个具备OAM功能的独立传送网。

1.4FEC能力

G.709为OTN帧结构定义了标准的带外FEC纠错算法,FEC校验字节长达4×256字节,使用RS(255,239)算法,可以带来最大6.2 dB(BER=10-15)编码增益,降低OSNR容限,延长电中继距离,减少系统站点个数,降低建网成本。G.975.1定义了非标准FEC,进一步提高了编码增益,实现更长距离的传送,但是因为多种编码方式不能兼容,不利于不同厂家设备的对接,通常只能应用于IaDI接口互联。

2. OTN技术的发展

与传统的SDH和WDM设备相比,目前OTN产品功耗较大,主要应用在本地网和城域网的核心汇聚层、省内干线网,以ODUk调度为主。随着集成技术的发展,OTN电交叉连接设备将向以下几个方向发展:

2.1向更大容量发展,满足网络流量持续高速增长的需求。

2.2 向小型化和集成化方向发展,满足网络边缘层网络应用的需求。

2.3向网络智能化方向发展,基于OTN的智能控制技术已经产品化,随着智能控制技术和辅助规划优化工具的功能完善,将引导OTN网络向智能化方向发展。

2.4向高度融合的多业务统一交换和承载方向发展

统一交换矩阵技术和产品发展很快,促进了包交换和ODUk交叉融合,将产生OTN和MPLS-TP融合设备,业内称之为P-OTN或E-OTN设备,它将是现有分组设备的发展方向,满足LTE环境下的业务和汇聚功能,实现多业务接入和传送能力。

2.5 向光层组网应用发展

OTN向光层组网应用发展的限制不在光交叉连接设备本身,而在于基于全光组网下的与光网络性能和稳定性相关的智能控制技术和网络损伤管理技术。ITU-T、IETF等国际标准化组织以及中国标准化协会都在展开对波长交换光网络(WSON)技术的研究。

3.OTN在城域网中的应用

根据以上分析,OTN在城域网中的应用将主要以结合城域WDM的方式出现。OTN定位于提供GE及以上速率大颗粒业务的承载。因此,讨论OTN在城域骨干/汇聚和接入层的应用方式,并对ODUflex的应用进行探讨就显得十分重要。

在城域骨干/汇聚层,当城域网内不同区域之间或接入长途网络的GE及以上大颗粒业务需求达到一定规模,且具有调度、汇聚和保护恢复等需求时,可在城域网的核心/汇聚层部署OTN/WDM网络。OTN网络的应用主要存在以下两种场景:承载GE颗粒及以上的TDM和以太网专线业务。客户设备可以直接接入OTN网络,也可以通过接入/汇聚层SDH/PTN网络与OTN网络连接;作为IP、SDH和PTN等上层网络的承载网络,当SDH/PTN等网络中存在GE以上的子波长级中继电路需求时,可以将其接入到OTN网络中,由其实现调度和保护,达到节省光纤或波道资源的目的。

OTN最新引入的ODUflex技术类似于SDH中的VC级联技术,可以在同一个ODUk(k=2、3、4)内提供灵活的业务接入能力,实现对业务带宽的灵活适配,提高带宽利用率,满足用户的不同带宽需求。特别针对一些新业务如FC、CPRI等有更好的适配能力。

在城域接入层,接入层靠近网络末端,因此成本是技术方案选择的一个重要因素。在接入层应用的OTN设备主要以盒式设备的形态出现,并结合CWDM进行应用。接入层OTN除了可以提供上述骨干/汇聚层的业务以外,目前考虑的两个主要应用是CPRIoverOTN和PONoverOTN。

在3G网络的建设中,网络覆盖效果的好坏至关重要。传统的采用宏基站设备作为主要覆盖的建网方式,其主要问题是运营商在机房和线路的租用方面不得不花费大量时间和费用。新型的网络覆盖理念的核心思想就是把传统的宏基站的基带处理(BBU)和射频部分(RRU)分离,分成基带处理和射频拉远两个设备,在两者之间采用光纤连接。一个BBU可连接多个RRU,从而进一步提高基带池共享效率。分布式基站可实现更大容量BBU集中放置,更大程度节省站址资源。而公共无线接口规范CPRI是由爱立信、华为、NEC、北电网络与西门子等公司发起制定的连接BBU和RRU的标准接口。CPRI接口可以用于多种3G制式以及未来的LTE。

目前,光纤直驱和WDM/OTN技术都可以满足CPRI的传输要求。利用OTN承载CPRI接口信号可以提高光纤的带宽利用率,支持更长距离的传送,提供完善的保护能力和丰富的光层管理,支持任意拓扑组网,简化运维管理,扩容简单,可提高无线新业务的推出速度。利用OTN承载PON的好处与上述CPRIoverOTN类似,主要是延长PON的传输距离,并可提供保护。ITU-T最新通过的G.709标准已经对OTN传送CPRI和GPON信号的映射方式进行了规范。

4.结束语

目前,国内外主流运营商都非常关注OTN技术的发展和应用,多数运营商的WDM传输接口已经实现OTN功能。因此,为了满足日益增长的IP业务的承载需求,适应传送网技术的发展趋势,我国通信行业应增加OTN技术的研发投入,加快OTN设备的研发、标准化和推广应用。

参考文献

1.李晓强;杨志清;;OTN技术及其在海光缆通信网中的应用[A];第二届全国海底光缆通信技术研讨会论文集[C];2009年.

2.郝静;OTN承载40Gb/s以太网的关键技术研究与实现[D];武汉邮电科学研究院;2011年.

3.张映;OTN保护管理机制的研究与实现[D];武汉邮电科学研究院;2011年.

otn传输技术论文范文第10篇

自改革开放以来,国内科学技术日新月异,随着科学技术尤其是网络技术的不断发展,我国广电网络行业发生了巨大的变化与进步。新时期,面对行业转型发展、“三网融合”的新格局以及智能终端、移动互联网、大数据以及云计算等新一代信息技术高速发展的新形势,广电运行商借鉴、融合网络技术、互联网产品以及互联网模式,从而改变了以往广播电视单一、封闭的现状。本篇论文主要对新形势下广电网络技术的发展进行了分析,并提出了几点建议。

【关键词】

新形势下;广电网络技术;发展分析;建议

互联网领域中,云计算的出现是一个非常重要的改变,云计算的出现对运营商在网络、平台以及终端的服务模式产生着巨大的影响。本篇论文主要从云计算、光传送网以及智能终端三个方面探讨广电网络技术的发展,并提出了相应的建议。

1.云计算

1.1技术分析云计算(cloudcomputing)是一种基于互联网相关服务的增加、使用和交付模式,一般情况下,主要通过互联网向用户提供虚拟化的、易扩展的、动态的资源。云计算是一种传统计算机技术与网络技术相融合的一种产物,其有机融合了热备份冗余、负载均衡、虚拟化、网络存储以及效用计算、并行计算与分布式计算等。据美国国家标准与技术研究院(NIST)的定义,云计算有“S”、“P”、“I”三种不同的服务类型。第一种,“S”所代表的是软件即服务(SAAS);第二种,“P”所代表的是平台即服务(PAAS);第三种,“I”所代表的是基础设施即服务(IAAS),针对这三种不同的云服务类型,也有着三种不同的云服务平台。平台即服务、基础设施即服务是在软件即服务的理念上发展起来的,可以通过利用“SOA”或者是“Web”直接为用户提供其所需要的服务,与此同时,这两种类型也可以直接被当作软件即服务的支撑平台,间接为用户提供其所需要的服务。

1.2发展建议对于广电运营商来说,应该参考、借鉴云计算三层架构模式,发展初期,主要服务于内部,并随着自身的不断发展逐渐兼顾对内服务与对外服务,以阶段性提升的方式实现发展目标,即数字电视高清互动全业务云服务的逐步实现,最终形成“互联网+广电”的较为理想的云业务模式。此外,建议广电云平台采取基础三层架构的模式,对基于同一门户的、个性化的应用进行整合,最终成为一个软件,也就是软件即服务(SAAS);对行为分析系统、视频平台、运营支撑能力平台以及增值业务支撑平台等进行整合,使其最终成为一个平台,也就是平台即服务(PAAS);对计算资源、网络资源以及终端资源等进行整合,使其最终成为基础设施,,也就是基础设施即服务(IAAS)。

2.光传送网

2.1技术分析光传送网(OpticalTransportNetwork,OTN),是下一代骨干传输网,是基于波分复用技术发展起来的一种处于光层组织网络层面上的传送技术。OTN在一定程度上解决了传统的WDM网络保护能力与组网能力弱、调度能力差以及无波长业务等方面的不足,是电域管理、光域管理的一个统一标准。此外,OTN得到的传送容量非常大,可以被当作宽带传送大颗粒业务的一种最优技术。罗忠华贵州省三都水族自治县周覃镇文化站558109广电运营商以IP技术为基础所构建的专网,就是IP承载网。IP承载网主要用于承载重点客户VPN、视讯、软交换等对传输质量有着较高要求的业务。一般情况下,IP承载网所采用的是双星双归属、双平面的设计,这种设计的可靠性非常高,通过利用QoS保障以及流量控制等措施,不仅可以使IP承载网具备传输系统所有的高安全性、高可靠性,还可以使其具有IP网络的承载业务灵活、扩展性好以及低成本等一系列优点。

2.2发展建议对于广电运营商来说,应该响应工业与信息化部所提出的“宽带中国”战略,致力于建设下一代广电,切实践行“降费”“提速”等一系列政策,建议从接入互联、传输承载等方面,同步推进网络整体发展。采用OTN技术对基础传输网络进行部署,并使其不断朝着大带宽、大颗粒的方向进行发展,推动宽带传输向着百G的目标前进。与此同时,在业务承载网方面,应当将IP技术作为出发点,不断对IP承载网的架构进行改进与完善。

3.智能终端

3.1技术分析智能终端指的是指的是针对个人消费市场而言的终端产品,平板电脑、智能手机等是较为普遍的智能终端产品形态,现其已经逐渐朝着智能机顶盒、智能电视领域发展。随着电子消费的不断普及,大多数用户也已经越来越习惯应用移动互联网,从而提高了对智能终端及其业务能力的要求。与此同时,用户需求、技术以及业务模式的逐渐多样化,推动着智能机顶盒终端逐渐朝着开放化、融合化以及智能化的方向进行发展。相应在不久的未来,非智能终端会逐渐地被智能终端所取代,软件、硬件的快速更新换代是市场上的主要驱动力。

3.2发展建议智能终端得到发展的初期,硬件在智能终端技术的发展与进步过程中起着主导作用,硬件的升级可以直接使智能终端的业务能力以及性能得到提升,也逐渐地使用户改善了使用智能终端的体验,可以说,硬件是智能终端得到迅速发展的主要驱动力。新形势下,随着云计算的迅速发展,部分智能终端可以在云端实现其主要功能,广电领域中的大多数云终端业务能够在流化技术的基础上得到实现,大多数应用程序能够在云终端上运行,通过应用视频编码技术,也可以将应用运行面传输到云终端上,之后云终端会进行解码,并将其以编码形式输出。经过较长时间的发展,云终端、智能终端在各自的领域内逐渐发展成熟,对于广电运营商来说,应该与市场实际需求相结合,选择最适合的、科学的终端发展方案。

4.结语

综上所述,与互联网、电信网相比,广电网络行业的起步比较晚,其发展速度相对来说也比较缓慢,随着互联网、电信网介入领域的不断扩大,广电网络行业面临着严峻的挑战,其发展任重而道远。云计算、光传送网以及智能终端的不断发展,为广电网络行业带来了新的发展机遇。

参考文献

[1]孙圣安.广电网络行业的竞争形势及发展策略[J].视听界,2013年01期.

[2]林毅“.三网融合”背景下的广电网络发展之道[J].广播电视信息,2010年07期.

上一篇:有线传输技术论文范文 下一篇:光纤传感技术论文范文