山区大比例尺地形图测绘方法研究

时间:2022-10-23 04:51:31

山区大比例尺地形图测绘方法研究

摘 要:

山区大比例尺数字地形图运用以往传统的测绘方法很难快速达到目标,本文首先简要介绍无人机低空航摄系统,并通过实例验证无人机低空航摄系统测绘山区地形图的优势。

关键词:无人机;大比例尺;地形图

中图分类号:TB

文献标识码:A

doi:10.19311/ki.16723198.2016.10.088

0 引言

延安位于黄河中游,属黄土高原丘陵沟壑区。延安地貌以黄土高原、丘陵为主,属于典型的山区,就意味着测绘像延安这样的山区大比例尺地形图想用常规的测绘方法完成数字地形图的测绘是非常困难的。本文将简要介绍利用无人机航空摄影技术如何快速高效的进行数字测图。

1 无人机低空航摄系统

无人机低空航摄系统是以无人机为飞行平台,利用高分辨率相机系统获取遥感影像,利用空中和地面控制系统实现影像的自动拍摄和获取,同时实现航迹规划和监控、信息数据压缩和自动传输、影像预处理等功能,是具有高智能化程度、稳定可靠的,具有较强作业能力的低空遥感系统。

本文所述无人机飞行平台为“大地鹰”智能化测绘无人机,采用弹射自动起飞、程控超视距智能飞行执行、自动开伞降落,且体积小(机身长0.95m,翼展15m)、重量轻(空机重1kg,机翼载荷71g/ dm2),具有很强的实用性。市场上针对无人机数据影像处理的相关软件比较多,本文影像后期处理软件采用武汉大学开发的DP-Grid低空航测数据处理系统软件,立体采集、编辑成图采用适普公司的全数字摄影测量VirtuoZo和清华山维的EPS软件完成。

2 航空摄影测量外业

2.1 作业流程图

2.2 像片控制地标点布设

测区航摄采用SWDC-4数字航摄仪,该相机集成了GPS精密单点定位技术,可在航空摄影时,获取每张航片摄影瞬间的像主点坐标。

2.2.1 像控点布设方案

成图区域内,均采用四角两线法布设像控点,即在区域网四角各布设一个平高控制点(如图2所示),同时在区域网两端垂直于航线方向敷设两条控制航线(构架航线)。其四角像控点布设在构架航线和基本航线六片重叠处,航向跨度控制在18条基线以内;旁向跨度在8-10航线为加密区域。为了检查内业空三加密精度,区域中间须布设3-5个空三加密检查点。为了提高内业空三加密精度,四角平高控制点及检查点采用了地标像控点。

2.2.2 像片控制地标点的布设要求

(1)地标像控点应布设在基本航线6片重叠区域,且应与构架航线保持3片重叠。像控点地标布设时,应保证影像目标清晰,便于空三加密时,能够准确量测像控点目标几何中心位置。

(2)自由图边的像控点应布设出测区范围线20~30米。

(3)像控点布设点时,应考虑到采用GPS仪器测量时应满足的条件要求:像控点点位便于安置仪器,视野开阔,视场内障碍物的高度角不宜大于15°;点位距周围大功率无线电发射塔(如电视塔、电台、微波站等)不小于200米,距离高压输电线和微波无线电信号通道不小于50米,点位周围无强烈反射卫星信号的物体。

(4)地标点布设应依据航摄设计书提供的WGS84大地坐标系成果布设,利用手持GPS导航仪在实地定位确定地标点位置。

3 航空摄影测量内业

(1)选择模型加密点:在区域范围进行航线自动匹配构建自由网(或人工逐片手动选择模型标准点),并通过自动匹配或人工选择模型连接点实现航线内的模型连接以及航线之间的模型连接。主要工作包括自动相对定向、影像自动匹配选择模型连接点(或人工手动方式选择模型标准点)、自动转点与自动量测等。

(2)自由网平差、转刺控制点:航线自动匹配构建自由网完成后,对匹配或人工选择的模型标准点进行检查,剔除各粗差点。人机交互选择自动匹配失败时,反复进行航线自动匹配构建自由网,剔除各粗差点,人工消除区域网平差时超限的连接点。

模型连接点应分布均匀,且应选在标准点点位位置。各模型间连接点数不得少与2个。特殊困难地区标准点位置影像目标不明显,选不出点时,可尽量在标准点位最近的位置人工选点。为了提高加密精度,另外每像对非标准位置处应增选1~2个连接点,来增强模型连接网形强度。

4 全数字立体测图

(1)相对定向:相对定向完成后,各模型相对定向点数不得少于50个且要均匀分布。上下视差不得大于0.015mm。特殊困难地区,可适当放宽点数要求。

(2)绝对定向精度:绝对定向完成后,各模型定向精度必须满足相关要求。绝对定向后,检查员应进行检查。对于定向时超限的像对,由加密技术负责人认真分析原因进行解决。对于个别模型定向精度超限且无法解决时,必须经技术负责同意后方可作业,并且要记载说明。

(3)数据采集原则。

①对于相邻要素严格按照范围采集,相邻的边要严格捕捉,不应存在裂缝重叠等错误拓扑关系。

②采集矢量要素前,采集设备必须正确设置各项测图参数。严格按照规定要素标准图层代码进行采集,文件配置必须有检查校核记录。

③要素根据立体模型判读,立体模型中地物轮廓全部或部分可以看清的,测标用“小十字”,做到不变形、不移位、不遗漏。若立体模型中观测对象被植被、房屋阴影所遮盖而无法准确判读,采集时用与观测对象图式符号相近的符号绘出范围线,并进行标记,由外业实地精确定位、定性。在采集中对于依比例尺表示的地物,测标应立体切准地物的轮廓线;不依比例尺表示的地物,测标应立体切准其定位点或定位线。

④使用流线进行数据采集时应注意及时调整流线参数,使线条流畅、光滑。

⑤按内业立体模型定位、外业定性的原则进行数据的采集,保证数据的完整性、正确性,确保采集数据不断缺、遗漏、移位。采集过程由检查员进行的检查,如若出现差、错、漏的现象,检查员对于未按模型采集或漏采的地物、地貌应当重测或补测。

⑥整幅图的数据采集完成后,图幅之间要相互接边,最后输出*.dxf数据格式供后工序使用。

(4)外业调绘及精度检查:为了检查成果的可靠性,在测区不同区域采集了100多个明显的地物点和地形点统计精度,其中地物点点位中误差0.483m(小于规范要求的0.6m),结果完全满足《1∶5001∶1000 1∶2000外业数字测图技术规程》(GB/T 14912-2005)中1∶2000地形图的测量精度要求。

5 结语

本文介绍了无人机低空航摄在山区大比例尺数字地形图测绘项目中的应用,并在延安市山区测图中进行实际运用,通过实例验证了无人机低空航摄系统在山区地形图测绘项目中的优势,首先,大比例尺数字地形图测绘应用无人机低空航摄生产,完全可以达到精度要求,尤其是1∶2000比例尺;其次,相比传统测量技术,无人机测量可以很大程度的减少外业工作量,降低生产成本,提高作业效率;最后采用无人机低空航摄系统不仅能获得数字地形图,还能获得三维立体图和正射影像图,为后期的规划设计等各环节提供了更为直观的基础资料。

参考文献

[1]杨润书,吴亚鹏等.无人机航摄系统及应用前景[J].地矿测绘,2011,27(01):89.

[2]刘宝锋.1∶2000地形图测绘航测作业方法探讨[J].硅谷,2012.

上一篇:论高职英语教学中学生兴趣的激发和培养 下一篇:应用本科教育精神文化收益分析