金属材料加工工艺中激光技术应用分析

时间:2022-10-21 12:56:36

金属材料加工工艺中激光技术应用分析

摘要:激光技术是20世纪一项举世瞩目的科技成就,为人类各项事业的发展做出了突出贡献。近些年,激光技术的应用范围不断扩大,已经渗透到农业、工业、国防、科研等诸多领域。就材料加工领域来说,激光技术凭借自身独特的优势,俨然已经成为其不可或缺的发展元素。然而,由于各种限制因素的影响,激光技术在该领域的应用价值并未得到充分体现,应用潜能也并未得到充分挖掘。本文分析了金属材料加工工艺中激光技术应用。

关键词:金属材料;加工工艺;激光技术;应用

中图分类号:TB31文献标识码: A

引言

激光加工是一种新兴的先进制造技术,具有自己的特色与规律,经过多年的积淀形成了激光加工理论和各种激光加工工艺参数。激光与普通光相比具有单色、相干性、方向性和高光强,同样激光加工设备也涉及到众多学科因而决定了它的高科技性和高收益率。纵观国际和国内激光应用场情况经过多年来的研究开发和完善,当代的激光器和激光加工技术与设备已相当成熟形成系列激光加工工艺。

1、激光加工的基本特征

激光既具有时间控制性,又具有空间控制性,使其能够满足自动化加工的要求。因此,激光加工系统可以与计算机数控技术交相呼应,生成便捷、优质、高效的自动化加工设备,进而实现加工工业的低成本、高效率、高利润。总体而言,激光加工技术具有以下几项基本特征:

①工艺集成性好。一方面,同一台机床可同时具备多种加工工艺,如切割、焊接、打孔、表面处理等;另一方面,同一台机床可同时实现多种工艺同步进行或者不同工艺分步进行的效果。

②加工效率高。与其它加工工艺相比,激光加工工艺可以极大地提高加工效率。例如,激光切割效率是一般切割的15倍;激光焊接效率是传统焊接的25倍;激光打孔效率是机械打孔的40000多倍。

③加工质量好。激光加工大多采用非接触式加工方式,而且能量密度高,为加工质量提供了可靠的保障。

④适应性强。激光加工可适用于各种材料,如高强度材料、高熔点材料、高硬度材料等等。同时,激光加工既可适用于大气环境,也可适用于真空环境,体现了其适应性强的特点。

⑤经济效益高。提高经济效益,是激光加工最显著的特征。以激光打孔为例,它能比一般打孔技术节省25%~75%的直接费用和50%~75%的间接费用。

2、激光技术优势分析

2.1、加工速度快,效率高

激光切割是当前各国应用最多的激光加工技术,在国外许多领域,例如,汽车制造业和机床制造业都采用激光切割进行钣金零部件的加工。在航天工业中,铝合金用激光焊接的成功应用是飞机制造业的一次技术大革命。在汽车工业中,激光加工技术优化了汽车结构,提高了汽车性能,降低了耗油量。激光精加工和微加工不但促进了工业的发展,也为制造行业提供了有利条件。随着大功率激光器光束质量的不断提高+激光切割的加工对象范围之广,几乎包括了所有的金属和非金属材料。例如,可以利用激光对高硬度、高脆性、高熔点的材料,进行形状复杂的三维立体零件切割,这也正是激光切割的优势所在。由于激光加工技术的高效率、无污染、高精度、热影响区小,因此在工业中得到广泛应用。另外,激光切割的优点还包括设置时间短,对不同工件和外形具有很好的适应性。

2.2、精准率高,无污染

激光焊接激光焊接是将光斑非常细小高强度的激光照射到工件表面,通过激光与物质的相互作用,使作用区域内的母材局部快速熔化、汽化,实现焊接。与传统的加工热源相比,激光具有高亮度性、高方向性、高单色性和高相干性等特点,因此,激光加工是一种新型的高能束流加工技术,对提高产品质量和劳动生产率,实现生产的自动化和无污染,以及减少材料消耗等起到愈来愈重要的作用。例如,3D激光切割技术是加工高强钢最经济的技术。激光切割适合高强钢加工毛边过程。对于这种加工,3D激光切割尤其适合这种已经成型的金属薄板。如果钢的强度达到1500MPa,就只能采用激光切割技术才能实现,没有其他更经济的方法可以选择。另外,对于激光切割而言,低热输入是激光切割中一个非常重要的特点,因为一些合金的高强特性会由于热效应而导致性能降低。激光能焊接以前由于不可视原因而无法焊接的部位(例如,车顶侧板和后挡板的结合)。激光焊接同样是一种变形很小的高质量焊接,能够达到很高的精度。另外,激光焊接相比电阻点焊能够减小焊缝宽度,这再一次降低了重量和燃油消耗。

3、激光技术在金属材料加工工艺中的应用

3.1、激光切割技术

近年来,激光切割技术的应用十分广泛,据相关技术研究分析表明,激光切割技术占激光加工技术的近70%。激光切割机主要由激光器、机床主体和控制系统三大部分组成,常用于激光切割的有CO2激光器和YAG激光器,其特点是切割精度高。根据切割要求不同,激光光源的功率从5W到90KW不等,切割钣金工件所采用的激光光源功率一般是在100W到1500W之间。当切口宽度要求在0.15mm至0.2mm之间时,激光光源的输出功率应该小于1500W,此时激光光源的振荡模式为单模振荡,切割面也会相对比较平整;当切口宽度在1mm左右时,激光光源的输出功率应选择大于1500KW,此时激光光源的振荡模式为多模振荡,切割面会留下少许污物。当在使用激光技术切割厚板时,则需要采用空气、氧气、氮气等辅助气体来配合完成,氮气是一种惰性气体,用它来辅助切割,能够有效避免切面发生氧化;在对厚度较大的板进行切割的时候,使用氧气作为辅助气体,能够加快切割的速度。

激光切割工艺中可使用CAD技术结合CAM技术来提供加工工件所需要的工艺参数和加工信息,高效、连续地完成自动化切割和生产。激光切割不需要大量更换模具,工艺参数变更简单,可广泛应用于各种高硬度、高熔点、硬质、脆性、粘性、柔性材料及薄壁管件的切割,而且还具有切缝窄、速度快、热变形小、切口平整的优良特性。

3.2、激光打孔

激光打孔是激光技术材料加工中应用最早的激光技术,激光对板料进行打孔,一般采用的是脉冲激光,能量密度高,效率高。瑞士某公司利用固体激光器给飞机涡轮叶片进行打孔,可以加工直径从20μm到80m的微孔,它的直径与深度比可达1:80.另外利用激光在一些脆性材料如陶瓷上加工一些微小的异型孔,直径可以达到0.001mm,这是普通的机械加工完成不了的。

3.3、激光焊接

依据服务对象和使用器件的不同,激光焊接主要包括两种类型的机制,一种是深熔焊,主要应用于机械制造行业;另一种是传导焊,主要应用于电子电气行业。

从目前的发展态势看,激光焊接技术不断渗透到汽车行业,为行业发展提供了必要的技术支撑。具体而言,这种应用主要体现在以下两个方面:首先,传动件焊接。当前,激光焊接技术可满足汽车传动系统中70%的零件的焊接需求。与其它焊接技术相比,激光焊接不仅可以提高零件的使用寿命,而且可以降低零件的使用成本,体现出其独特的应用价值。其次,焊接组合件。简单地说,焊接组合件就是将分散的平板工件焊接成体、冲压成形。通过焊接组合件,既可以减少工件数量,也可以提高部件性能,还可以减轻车体重量,进而优化汽车的整体性能。以雅阁汽车为例,它的车门是由1.4mm的钢板和0.7mm的薄板拼焊冲压而成,降低了40%的车门重量。

此外,激光焊接技术凭借其坚固性强的特点,还广泛应用于刀具、刃具、量具制造行业。例如,我国圆锯片的年产量超过1000万片,不仅满足了建筑行业对高质量锯片的迫切需求,而且保障了国外锯片市场的有效供给。

3.4、激光表面热处理

激光表面热处理主要表现在两个方面:一是激光表面硬化。在激光表面硬化的作用下,马氏体的量会不断增加,进而导致零部件疲劳强度和耐磨性能的不断提高。同样是AISIl045型钢,在未经处理以前,钢的硬度仅为HRC35,而质量损耗却高达418mg。而在同等条件下,激光表面硬化会增加HRC20的硬度,同时降低304mg的能耗。可见,激光表面硬化会极大地提高物件硬度,降低物件质量损耗。现如今,激光表面硬化已不同程度地应用于汽车锭杆、凸轮轴、曲轴、缸套等物件的制造。从实际效果看,它不仅提高了物件的使用寿命,而且降低了物件的制造成本。二是激光熔覆与合金化。激光熔覆与合金化是以提升熔点的方式来增强加工材料的抗蚀性和耐磨性。该处理主要应用于熔点较低的材料。通过处理,使材料生成高熔点合金层,进而实现提升材料性能的目的。尽管激光熔覆与合金化有所区别,如涂层化学成分的变化趋向,但两者相辅相成,都是现实中不可或缺激光表面热处理方式。当前,激光熔覆与合金化主要应用于气门、阀门、齿轮齿面、铸铁模具等工件制造,为工件质量提供了着实的保障。

结束语

激光加工技术产品具有优质、高效、节能的优点,激光加工技术已逐渐使用到钣金工艺生产中,但激光技术的全面推广仍受技术理论和加工设备等因素的制约,许多方面的应用还有待进一步深入。

参考文献

[1]樊熊.金属材料加工工艺中激光技术应用分析[J].企业技术开发,2013,15:23-24.

[2]田延龙.激光技术在金属材料加工工艺中的应用探析[J].科技创新与应用,2013,10:25.

[3]王晓霞.热固性树脂基复合材料的固化变形数值模拟[D].山东大学,2012.

上一篇:垃圾填埋场渗滤液的处理工艺及控制措施 下一篇:解析变压器检修维护中的常见故障及处理