基于无线传感器网络的煤矿监测系统设计

时间:2022-10-19 04:20:17

基于无线传感器网络的煤矿监测系统设计

[摘 要] 煤矿安全已经成为社会非常重视和关注的问题。针对当前基于有线网络和固定传感器技术的监测系统存在监测盲区的问题,设计了一套基于Zigbee技术的无线传感器网络煤矿监测系统方案。分析了煤矿监测系统的结构,对系统的无线传感器网络部分进行了详细设计,包括硬件设计和软件设计。系统对预防煤炭安全事故有着重要的意义。

[关键词] 煤矿安全; 监测系统; 无线传感器网络; Zigbee协议; 节点

引言

我国煤矿开采方式只要是以矿工开采为主,多数矿井都有瓦斯、煤尘、火灾等隐患。我国煤矿生产形势一直十分严峻,煤矿频繁发生事故,给国家和人民都造成了巨大的损失。安全问题一直困扰着我国煤矿生产,是制约我国煤矿行业发展的主要障碍。但是目前我国使用的安全监测系统主要还是以现场总线为主,通过有线方式进行信息数据的采集和传输,这在矿井特殊环境下存在许多的弊端。如井下监测点数量有限,存在监控盲区;随着挖掘的深入,传感器无法实现快速跟进;一旦网络发生故障,系统就会瘫痪等。

无线传感器网络的网络自组织、结构灵活、以数据为中心的特点很适合矿井环境安全监测的应用,无线通信技术ZigBee的低功耗、低成本、覆盖范围大、高可靠性等都符合系统的要求,很好的解决了上述的弊端。本文设计的煤矿安全监控系统,是通过无线传感器网络实现对煤矿监控区域瓦斯浓度和温湿度等信号的采集测量,同时将所采集的信息在地面控制中心 PC 机上实时地显示出来,对煤矿井下环境数据进行全方位实时监测和智能预警,对煤矿的安全生产具有重大的意义。

1 总体结构

整个系统分为井上及井下两大部分,由协调器、终端节点、路由节点、监控计算机和监控中心管理系统组成。在主巷道的入口处架设协调器,在煤矿井下主巷道和采掘工作面中每隔几十米布设一个路由节点,矿井工作人员佩戴移动的终端节点,每个采掘区形成一个无线传感器网络,它通过协调器采用总线与地面监控计算机相连。其中协调器、终端节点、路由节点构成基于zigbee的无线传感器网络,三种节点相互配合,共同完成对瓦斯浓度、温湿度数据的采集、传输和对网络的管理。系统的总体结构如图1所示。

系统井下部分为路由节点和终端节点构成的ZigBee网络。终端节点上使用瓦斯传感器、温湿度传感器等对井下环境数据进行采集,并通过路由节点的转发送给井上协调器节点。协调器节点与监控计算机通过串行接口将数据传给监控计算机。监控计算机收集数据信息,对数据进行实时监测,并能够通过以太网或Internet将数据传送给监控中心。

2 节点硬件设计

协调器节点、路由节点和终端节点采用相同的硬件设计。考虑到系统具有低功耗和可靠性高等要求, PIC18F4620单片机具有低功耗、性能稳定的特点;CC2420射频芯片只需简单电路设计,且支持ZigBee协议。传感器节点采用PIC18F4620单片机和CC2420射频芯片。节点的硬件结构如图2所示。

节点硬件平台以PIC18F4620单片机和CC2420射频芯片为核心,在单片机上扩展出SPI接口与CC2420进行连接,它们之间采用主从模式进行通信,同时还在扩展了RS232和RS485接口电路。针对影响矿井安全环境的因素,系统采用瓦斯传感器和温湿度传感器对矿井环境相关数据信息进行采集,传感器采集的数据经过信号放大、A/D转换等处理后传输给控制器。然后节点利用CC2420射频收发器将数据发送给中心节点,当数据值超标,产生安全隐患时启动报警装置发出警报。瓦斯传感器采用LXK-3,可以实现瓦斯浓度4%以内的检测,且当持续半分钟检测到瓦斯浓度高于1%时,蜂鸣器发出报警信号。温湿度传感器采用SHT11,根据煤矿的温湿度参数自动对瓦斯传感器校零,从而提高瓦斯浓度报警器的准确性。节点采用9V电池供电,通过稳压器将电压输出转换为系统可用电压。

3 软件开发环境

MPLAB IDE是Microchip公司用于PIC 系列单片机的基于Windows 操作系统的集成开发环境,采用汇编语言或C语言使用内置编辑器创建和编辑源代码。MPLAB ICD 2 在线调试器实时调试可执行逻辑,使用 MPLAB ICD 2 器件编程器向单片机中烧写。

ZigBee协议栈由Microchip协议栈的3.5版本来实现。Microchip协议栈的3.5版本能够在大多数PIC18系列的单片机上进行移植,并支持各种ZigBee网络拓扑结构,能够实现全功能设备和精简功能设备的功能。

4 节点程序设计

在本系统中,节点设备的功能不同。传感器终端节点的主要功能是通过瓦斯传感器和温湿度传感器对矿井环境相关数据信息进行采集,并将数据发送给协调器节点;路由器节点的应用层程序主要功能是网络路由的维护、节点的管理和数据的传输等;协调器节点的任务是创建整个网络,并将从传感器节点传输来的数据通过串口传输给监控计算机,同时将控制命令发送给网络中的节点。传感器终端节点、路由器节点和协调器节点均有各自的应用层程序文件:RFD.c、 Router.c、Coordinator.c,这三个文件分别是终端节点、路由器节点和协调器节点的应用程序,分别实现了各自的功能。

终端节点、路由器节点和协调器节点三种节点的应用程序都是通过调用原语,通过改变原语的状态使ZigBee协议栈的各子层实现相应的操作来实现的。在程序的初始阶段都要先对看门狗、硬件、协议栈及其它部分进行初始化操作。节点初始化后,协调器节点建立并维护网络,路由器节点和终端节点在建好网络后加入网络,负责各自在网络中的任务。

4.1 协调器节点程序设计

协调器节点作为网络的中心节点,是无线传感器网络和监控计算机的联系纽带。它一方面要创建网络,对网络地址进行分配,并维护网络状态;另一方面要在收到数据请求时从终端设备节点读取数据信息,并将这些数据传送给监控计算机。在协调器节点开始运行后,要先对PIC18F4620单片机和CC2420芯片进行初始化操作,然后创建网络并对网络进行监听,将接收到的数据发送给监控计算机。节点的程序流程图如图3所示。

4.2 路由节点程序设计

终端节点和协调器节点之间可能因为距离等问题无法直接进行数据的传输,路由节点的功能主要是帮助协调器节点建立完整的网络,管理其覆盖范围内的传感器终端节点,对网络中传输的数据信息进行转发,类似于一个网络中继站。当协调器节点创建网络以后,路由节点要搜索并加入网络,然后管理其覆盖区域的传感器终端节点加入或离开网络。该节点的流程图如图4所示。

4.3 终端节点程序设计

系统的终端节点实现的功能是利用节点上的传感器对环境对象的数据进行感知和采集,对采集的数据进行一定的处理,然后通过CC2420射频芯片将数据通过网络发送给协调器节点。终端节点在收到协调器节点的数据请求命令后才会进行相关数据的采集和发送,在没有数据请求的时候处于休眠状态,以减少能量消耗。终端节点的软件流程图如图5所示。

5 结束语

将无线传感器网络应用到煤矿安全监测中,可随意增加移除监测节点,方便网络扩展,弥补了煤矿目前的煤矿生产安全监控系统的不足,具有重要的现实意义。

随着无线传感器网络和煤矿监控技术的发展,成本的不断下降和体积的进一步减小,无线传感器网络在煤矿安全监控系统中的大规模应用会很快实现,未来的煤矿安全监控系统会更智能、更完善、更稳定。

[参考文献]

[1] 张晓杰,葛广军 ,史广尚. 基于现场总线的煤矿安全监控系统设计与实现[J] . 煤矿机械,2008,29(10):199-201.

[2] 吴姗姗, 黄友锐, 史明,等. 基于无线传感器网络的煤矿瓦斯监测系统的设计[J] .煤矿机械,2012,33(5):240-241.

[3] 王潇,王凤英.基于ZigBee和GPRS的无线网络煤矿安全监测系统[J] . 煤矿机械,2010,31(3):241-243.

[4] 姚向华,杨新宇,易劲刚,等.无线传感器网络原理与应用[M] .北京:高等教育出版社,2012.

[5] 魏作辉; 艾惠明.基于ZigBee无线传感器网络的煤矿监测系统设计[J] .工矿自动化,2008(3):41-43.

上一篇:光纤传感器在井下瓦斯安全监控中的应用 下一篇:中原地区煤矿产业集群发展现状研究