微波通信技术的发展与展望

时间:2022-10-15 09:08:15

微波通信技术的发展与展望

微波通信技术在我国的应用逐渐普遍,主要应用于干线通信应急通路之中。本文简要分析了微波通信目前的发展现状,同时从关键技术、发展趋势两方面分析了微波通信技术未来的发展趋势,以期扩大微波通信技术在我国的应用范围,同时促进该技术的发展。

【关键词】微波通信技术 发展现状 发展趋势

电信领域范围内,凡是处于300MHz至300GHz频段内的通信,都可称之为微波通信。微波通信于20世纪中期开始应用于实际生活当中,其能够实现大容量通信,且建设速度较快,质量较高,通信过程稳定,维护便捷,由于上述优点,使其成为目前应用极为频繁的传输方式。相比光纤通信以及卫星通信,微波通信的通信网更为容易建立,即使处于山区、农村等较为偏僻的地区,也可以实现微波通信。故而,微波通信具有良好的应用前景。

1 微波通信技术的发展现状

1.1 微波中继通信

Microwave Radio Relay Communication,译作微波中继通信,是目前常用的通信手段之一,其主要用作处理城市大容量信息的传输。

如今,通信网络将灵活、智能化以及动态性作为未来的发展趋势。所以,原有模拟微波通信技术已然无法满足实际生活的需求。PDH微波通信技术虽然更为适应点对点通信,然而却无法满足动态联网的需求,同时也无法为新型业务的拓展以及现代网络化管理提供支持。随着数字微波传输体制的建立以及应用,PTN微波通信技术也随之产生。相比光纤通信技术,微波通信所传输的容量较少,但无论是通信干线,还是支线依旧是补充以及保护光纤网络的重要方式。

相比原有PDH微波产品而言,PTN微波产品具有如下优势。

1.1.1 传输信息的容量增加

因为微波具有较大的射频带宽,同一微波射频信道可在同一时间内向多个干路传送数字信息,更为符合目前宽带通信业务的要求。PTN微波以GE业务光模块作为基础同步传输模块。通常情况下,PTN数字微波可同PTN光网完全兼容,无线传送分组数据,无论是传输信息的容量,还是传输信息的速度,都有明显的增加。其速率值可达到1.25Gbps。

1.1.2 使得网络规划与运营更为简单

PTN技术分为两类,分别为以太网增强技术以及传输技术结合MPLS。其中,以太网增强技术以PBB-TE为主要代表。理论上,PBB技术最多可支持1600万用户使用,从而使网络扩展性以及业务扩展性问题得以解决。同时也解决了VLAN以及MAC地址同用户网冲突的问题,使得网络规划与运营都得到简化。

1.2 移动通信

现今,移动通信技术发展极为迅速,同时,其也开始与互联网融合,使得人们对移动网络宽带化的需求相应增加。WiMAX指全球互通微波存取技术,该技术属于高速无线数据的网络标准之一,往往应用于城域网内。802.16物理层共含有三个变体,WiMAX选取了802.16内256路子载波OFDM,以便通过拥有较宽宽度的频带与略远的传输距离,帮助电信业务人员完成无线网络最后一英里的连接工作。

无线通信技术共含有两种基础技术,分别为传送技术以及多址技术。WiMAX使用OFDM调制技术作为基础传送技术。OFDM调制技术令处于高速传播状态的数据流通过,之后再对数据进行转化,并将转化后的数据分配至传送速率不高的多个正交子信道当中,完成传送过程。

至于多址技术,WiMAX选用了OFDMA技术。OFDMA技术所使用的方法为频分多址。相比OFDM,该技术具有如下优势:分配方法更为灵活以及相同频带能够实现多个使用热源的运输。OFDMA中的所有使用人员都可以选用具有良好条件的子信道作为传送数据的通道,完成数据传送工作。而OFDM技术则需要利用整个频带传送数据。

Long Term Evolution,译作长期演进技术,简称为LTE。LTE与WiMAX技术之间最大的区别便是LTE技术的上行链路内使用了两种新型技术:

(1)SC―FDMA技术;

(2)Virtual MIMO技术。

SC―FDMA技术的应用较为便捷,也容易实现,同时可以有效解决无线通信信道多径效应影响符号稳定性的问题。与使用OFDMA技术的终端比,终端应用SC―FDMA技术技术可实现对PAPR,即峰均功率比值的有效控制,尽可能使其降低。

2 关键技术与发展趋势

2.1 关键技术

2.1.1 编码工作

就目前而言,大部分移动通信都会使用自适应调制编码(AMC)这一技术,按照信道实际质量的优劣,对编码速率进行调节,以便获取更高的吞吐量。若无限通信处于速率不高的状态下,则信道的预估较为精准,AMC编码调制效果也较为良好。然而,由于终端移动速度会持续增加,信道质量预估工作往往无法与信道变化速度的保持一致,从而出现信道测量结果存在偏差或是错误的现象,而AMC按照与实际情况不符的预测结果对编码进行调整,自然会对误码率、系统容量以及吞吐量等知识性能的数据造成极为不利的影响。

3.1.2 多天线技术

分集接收技术适用于微波中继系统,能有效提高数字微波电路传输的实际质量,同时避免产生多径衰落的现象。系统内,因为所用调制方式为多状态调制方式,更为容易感知频率选择性衰落。故而,分集接收在该领域的应用十分广泛。分集改良的效果往往由各个分集支路之间信号的不相关性决定。为了避免微波通信受到多径衰落或是降雨衰落的干扰,通过合成或是转换数个特征存在差异的接收信号,以便获取优质信号的技术便称之为分集技术。微波中继系统内,较为常用的分集技术有空间分集以及角度分集等。

2.2 发展趋势

(1)将大容量作为微波通信的发展趋势。微波中继通信未来的发展方向之一便是扩大微波通信的传送容量,可应用具有多种状态的QAM进行调制。至于移动通信则可以依靠OFDM技术实现高速宽带互联技术的开发工作。

(2)将高频段作为微波通信的发展趋势。按照电信主管部门的相关规定,凡是不高于3GHz的频段应分配予移动以及个人通信,而3GHz至10GHz的频段相当拥挤。大部分数字微波通信设备商家开始调整微波通信技术的发展趋势,要求未来微波通信频段应不低于10GHz。

3 结语

光纤通信技术以及移动通信技术是目前通信网络较为常用的两大主要通信技术,相关的产业链也较为完整,成为大部分人所使用的通信技术。微波中继系统主要用作对光纤传输的备份以及补充。故而,微波中继通信系统必不可少。如今,移动通信技术的发展愈发迅速,对微波通信技术的要求也有所提高。为此,相关人员还需促进微波通信技术的发展,以便满足移动通信的需求。

参考文献

[1]郭兴安.探讨微波通信技术的发展和应用[J].电子测试,2015,09:83-84.

[2]赵慧.无线通信技术发展及未来趋势展望[J].信息通信,2011,03:123-124.

[3]黄红忠,林荔生.微波在电力通信方面的应用分析[J].数字技术与应用,2011,12:38.

[4]潘英.贵州电网微波通信系统再利用及最新微波技术展望[J].贵州电力技术,2013,05:46-48.

作者单位

中国移动通信集团广东有限公司佛山分公司 广东省佛山市 528000

上一篇:北斗二代卫星导航接收机关键共性技术论述 下一篇:PCMD在3G用户话务模型研究中的应用