对工程结构中裂纹板进行动力分析及结论

时间:2022-10-14 12:37:27

对工程结构中裂纹板进行动力分析及结论

摘 要:在复杂的使用环境中,结构由于外部荷载的作用以及各种突发性外部因素的影响而出现局部的损伤,这些局部损伤对结构的安全构成了潜在的危险。由于应力集中,疲劳等诸多因素的影响,会使局部损伤不断地增大,导致整个结构的承载能力下降乃至破坏。如果能及时发现损伤,并诊断出局部损伤的位置以及损伤程度,就能及时进行修复、恢复结构的承载能力。因此,及时发现板的裂纹以及评估它的破坏程度,对于修复并延长结构的使用寿命,保障人们的生命和财产安全具有重大的实际意义。

关键词: 结构;裂纹板;裂纹;动力分析;结论

中图分类号:[TB16] 文献标识码:A

一.裂纹板的研究背景及现状

在板的使用中,随着当代我国经济的快速发展和不断提高,新型材料的发明和新兴机械结构的不断产生,使得薄板的模型到处可见。尤其是在薄板带有裂纹工作的状态下。一般而言,结构中如果存在裂纹或者缺陷,会改变结构的物理特性,如质量、阻尼和刚度等,从而导致结构的动力学特性发生了变化。所以,要对结构进行整体性的检测和评估,来确定结构是否有损伤或者破坏,进而判断损伤的位置和损伤的程度,以及损伤程度的变化趋势,这样就需要研究分析含裂纹结构的动力学特性。然而,进行含裂纹结构的动力特性的分析一直是动力学研究领域的难点之一。

二.从裂纹梁裂纹板的推广研究

目前在研究含裂纹结构的动力特性分析方面,已经有了很多的方法可以借鉴,但是这些已有的方法大多是裂纹梁的研究,而关于裂纹板的研究却很少。因此,鉴于这个问题,本文在总结了含裂纹梁动力仿真中三种常用的分析模型基础上即:弥散裂缝模型、集中柔度模型和精细网格模型,进行了修改,然后推广到了含裂纹板的动力特性计算模型。并以精细网格模型为主着重研究了含双裂纹板的动力特性

三.含裂纹板的裂纹分析

讨论自由振动问题一般根据要求列出运动微分方程进而解方程求得自由振动的频率,此频率称为固有频率或者自然频率它在确定共振条件方面有着重要的意义。当弹性体(梁、板、壳体)内产生裂纹后,由于刚度减小,则其固有力学特性,如固有频率、屈曲临界压力等随之降低,以此可以用测频的方法来监视裂纹的发生与发展。裂纹振动分析的关键是裂纹的处理,常见的处理方法:等效截面法、局部刚度法、一致裂纹梁理论。

四.本文研究的主要内容

本文在总结和汲取前人的研究成果基础上,用ANSYS软件建立了裂纹板的有限元模型,将计算单裂纹结构动力特性的方法推广到计算多处裂纹板弯曲振动的近似模态,计算了双裂纹在不同裂纹长度、不同的裂纹深度和不同相对位置处对矩形板模态参数的影响,为实际工程故障诊断提供参考。本文主要研究内容如下:

(一 )对于含裂纹薄板在弯矩和剪力联合的情况下的应力强度因子,还没有完整的解答可以利用。因此,研究了含裂纹有限尺寸应力强度因子计算的近似解。

(二)利用断裂力学的研究成果,通过对应力强度因子的积分,推导出含裂纹薄板的单元刚度矩阵。

分别研究了含裂纹薄板有限元建模的三种主要方法:,弥散裂缝模型、集中柔度模型、精细网格模型,其中主要研究了精细网格模型,并通过实例分析了含单裂纹薄板的动力特性,并与已有试验结果对比验证文述算法的有效性。

借助精细网格模型的思想,以含双裂纹悬臂矩形薄板为例应用有限元软件ANSYS对其进行模态分析,讨论了该板固有频率和振型在不同裂纹长度下随双裂纹相对位置改变的变化规律。

应用有限元软件ANSYS对双裂纹悬臂板进行模态分析,通过数值模拟仿真,讨论了双裂纹悬臂矩形板的固有频率和振型在不同裂纹相对位置时随裂纹深度增加的变化规律。

得出简单结论

本文具体而详细地主要以含裂纹悬臂矩形薄板为研究对象进行理论建模、有限元分析及模态分析仿真,得到了不同长度的裂纹在不同位置时含裂纹薄板的各阶频率的变化和振型的变化和不同深度的裂纹在不同位置时含裂纹薄板的各阶频率的变化和振型的变化,取得了令人满意的分析结果以及有价值的研究结论:

各阶的固有频率随裂纹位置、裂纹深度和裂纹长度的变化具有明显的规律性变化。固有频率随着裂纹的扩展逐渐减小,双裂纹深度和长度对板固有频率的影响同裂纹位置密切相关,此外,裂纹长度对高阶频率的影响较大,裂纹深度对低阶频率的影响较大。这对工程实际有指导意义。

裂纹的存在对板振型的影响是显著的,但对不同阶振型影响的显 著程度不同。阶数越高,裂纹对板振型的影响越显著,这与裂纹长度和裂纹深度对频率的影响情况不同。这就说明,当采用振型作为结构损伤的识别参数时,一般来说,振型的阶数要取得相对比较高会好一些。

通过对比三种方法在固有频率和振型方面的差异。三种求解方法各有不同,但都不可避免的存在误差。分析其产生的原因主要有以下几个方面:

弥散裂缝模型优点在于使用方便,仅用很少的单元就可以得到含裂纹结构的动态响应。但是这种模型比较粗糙,受网格密度影响很大,对裂纹影响区域即裂纹单元长度没有严格的定义,为了得到准确的仿真结果,单元划分和抗弯刚度减少量要根据实验结果估计、修正。

集中柔度模型的理论基础好,但是计算复杂,难以应用现有商业有限元软件计算,局部柔度的求取依赖于应力强度因子,而复杂结构的应力强度因子计算比较困难,计算的精确度直接影响裂纹结构的仿真精度。

六.相关建议

本文虽然取得了一些有意义的结论,但由于时间和能力有限,不能对课题进行更深入的研究。从课题研究的延续性和对裂纹结构模型准确性以及计算精度更高的要求上看,还需要做进一步的工作。

由于受到时间的限制,本文主要以悬臂薄板为例,研究了板的动力特性。这种研究方法也可以推广到其他边界条件的薄板。

本文在研究含双裂纹悬臂矩形薄板的动力特性问题中。将裂纹模拟为一细长菱形,当然,这种模拟不一定是最接近现实模型的,因此可以在裂缝模型的建立上有更多的构思,以至于得出的结果更贴近实际工程。

参考文献:

[1]李舜酩.机械疲劳与可靠性设计,北京:科学出版社,2006.

[2]王磊,李家宝.结构分析的有限差分法,北京:人民交通出版社,1982.

[3]胡海岩,机械振动基础,北京航空航天大学出版社,2005.

[4]徐芝纶.弹性力学下册,北京:高等教育出版社,2006.12.

[5]李学平, 余志武. 含多处裂纹梁的振动分析,应用力学学报, 2007,(01).

上一篇:浅析如何开展控制性详细规划的前期规划研究 下一篇:大力发展城市文化 努力打造文化强市